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SYLLABUS: ADVANCED ALGEBRA

Objectives:

This course aims to The objective of this course is to study field extension, roots of

polynomials, Galois Theory, finite fields, division rings, solvability by radicals and to

develop computational skill in abstract algebra.

Unit I: Algebraic Extension Extension fields - Transcendence of e.

Unit II: Splitting Field and Simple Extension Roots of Polynomials - More about

roots.

Unit III: Galois Theory Elements of Galois Theory.

Unit IV: Finite fields Finite fields - Wedderburn’s theorem on finite division rings.

Unit V: Frobenius and Four - Square theorem Solvability by radicals - A theorem

of Frobenius - Integral Quaternions and the Four - Square theorem.
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Unit 1

Extension Fields

Objectives:

• Recall rings and commutative ring.

• Analyze the characteristics of fields.

• Study how to extend a field to a extension field.

• Understand the concept of algebraic extensions.

• To show that the number e is transcendental.

1.1 Field Extension

Definition 1.1.1. Let R be a commutative ring with identity. R is a field

if every non-zero element in R has multiplicative inverse (or) (R∗, .) is an

abelian group (or) R is a commutative skew field.

Example 1.1.2. (i) Q ⊂ R ⊂ C,Zp are fields.

(ii) Q(x),R(x),C(x),Zp(x) are fields.
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Definition 1.1.3. Let F be a field. A field K is a field extension of F if

F is subfield of K.

[K : F ] denote K is field extension of F .

Example 1.1.4. (i) [C : R], [C : Q], [R : Q] are field extensions.

(ii) Every field F is a field extension of itself.

Remark 1.1.5. If [K : F ] is a field extension, then F is a subfield of K

and so K is a non-zero vector space over F . Hence K has basis B and

dimFK = |B| . Hence the degree of [K : F ] is [K : F ] = dimFK.

Remark 1.1.6. If φ : F → K is any ring homomorphism, where F,K

are fields, then φ = 0 or φ is 1− 1.

Theorem 1.1.7. Let p(x) be a non-zero constant irreducible polynomial

of degree n over F . Then there exists a field extension K of F such that

K has a root of p(x) and [K : F ] = n.

Proof. Since p(x) is irreducible over F , < p(x) > is maximal ideal in

F[x]. Clearly, F is a subring of F [x]. Clearly F [x]
<p(x)> is a field. Take

K = F [x]
<p(x)> = {f(x)+ < p(x) >: f(x) ∈ F [x]}.

Define φ : F → K by φ(a) = a+ < p(x) >, for all a ∈ F . Let a, b ∈ F .

Now φ(a+ b) = (a+ b)+ < p(x) >= a+ < p(x) > +b+ < p(x) >= φ(a)+

φ(b), φ(ab) = ab+ < p(x) >= (a+ < p(x) >)(b+ < p(x) >) = φ(a)φ(b).

Therefore φ is a ring homomorphism. Since φ(1) = 1+ < p(x) 6= 0+ <
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p(x) >, φ is non-zero ring homomorphism. By Remark 1.1.6, φ is 1 − 1

⇒ Kerφ = {0}. By first isomorphism Theorem, F ∼= φ(F ) is a subring

of K and so [K : F ] is a field extension.

Define ψ : F [x] → K by ψ(g(x)) = g(x)+ < p(x) >, for all g(x) ∈

F [x]. Let g(x), h(x) ∈ F [x]. ψ(g(x) + h(x)) = (g(x) + h(x))+ < p(x) >=

(g(x)+ < p(x) >) + (h(x))+ < p(x) >= ψ(g(x)) + ψ(h(x))

ψ(g(x)h(x)) = g(x)h(x)+ < p(x) >= (g(x)+ < p(x) >)(h(x)<p(x) >

) = ψ(g(x))ψ(h(x)). Thus ψ is a ring homomorphism. Clearly, ψ(a) =

a+ < p(x) >= φ(a), for all a ∈ F ⊂ F [x]. Since F ∼= φ(F ), a =

φ(a) = a+ < p(x) >,∀a ∈ F . Let p(x) = a0 + a1x + · · · + anx
n ∈ F [x].

Then ψ(p(x)) = 0+ < p(x) > in K. Let α = x+ < p(x) >∈ K. Then

ψ(p(x)) = 0+ < p(x) > in K. ⇒ ψ(a0 +a1x+ · · ·+anx
n) = 0+ < p(x) >

in K.

⇒ ψ(a0) + ψ(a1)ψ(x) + · · · + ψ(an)ψ(xn) = 0+ < p(x) > in K. a0+ <

p(x) > +a1+ < p(x) > (x+ < p(x) >) + · · · + (an+ < p(x) >)(xn+ <

p(x) >) = 0+ < p(x) > in K.

⇒ a0 + a1α + a2α
2 + · · · + anα

n = 0+ < p(x) > in K. Thus α is a

root of p(x) in K. Since α = x+ < p(x) >, we have 1+ < p(x) >=

1, α, α2, . . . , αn+1 ∈ K. Let B = {1, α, α2, . . . , αn−1} ⊂ K. Suppose

a0 + a1α + · · · + an−1α
n−1 = 0+ < p(x) >, where ai ∈ F . Then,

a0 + a1(x+ < p(x) >) + a2(x2+ < p(x) >) + · · · + an−1(xn−1+ < p(x) >

) = 0+ < p(x) >.

⇒ a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1+ < p(x) >= 0+ < p(x) > .

⇒ a0 + a1x + · · · + an−1x
n−1 ∈< p(x) >= {λ(x)f(x) : λ(x) ∈ F [x]}.
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−→ (1).

For any g(x) ∈< p(x) > and g(x) 6= 0, deg(g(x)) ≤ n. (1) is pos-

sible, when a0 + a1x + · · · + an−1x
n−1 = 0. Since, {1, x, . . . , xn−1} ⊆

{1, x, x2, . . . , xn, . . .} is lineraly independent in F [x].

⇒ {1, x, . . . , xn−1} is linearly independent. Since a0+aax+· · ·+an−1x
n−1 =

0, ai = 0. Thus B is linearly independent subset of K. For any g(x)+ <

p(x) >∈ K, g(x)+ < p(x) >6= 0+ < p(x) >. Thus g(x) /∈< p(x) > and

g(x) 6= 0, g(x) ∈ F [x]. By division algorithm, there exists q(x), r(x) ∈

F [x] such that g(x) = p(x)q(x) + r(x), where r(x) = 0 or deg(r(x)) <

deg(p(x)) = n.

Let r(x) = a0+a1x+an−1x
n−1 ∈ F [x]. Then g(x)+ < p(x) >= p(x)q(x)+

r(x)+ < p(x) >= r(x)+ < p(x) >= a0+a1x+· · ·+an−1x
n−1+ < p(x) >=

(a0+ < p(x) >) + (a1+ < p(x) >)(x+ < p(x) >) + · · ·+ (an−1+ < p(x) >

)(xn−1+ < p(x) >) = a0+a1α+· · ·+an−1α
n−1. Thus B spans K and B is a

basis for K over F and K = F [x]
<p(x)> = {a0 +a1α+ · · ·+an−1α

n−1 : ai ∈ F}.

Hence [K : F ] = n. 2

Definition 1.1.8. Let [K : F ] be a field extension and S ⊆ K. Then

F (S) =
⋂

F,S⊆Kα

Kα,

Kα is a subfield of K. F (S) is the smallest field containing both F and

S. For any α ∈ K, F (α) is the smallest field containing both F and α.

Corollary 1.1.9. Let p(x) be an irreducible polynomial of degree n over

F . Then K ∼= F (α).
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Proof. Clearly K = {a0 + a1α + · · · + an−1α
n−1 : ai ∈ F} and F (α) ⊆

K −→ (1).

Define φ : K → F (α) by φ(g(x)+ < p(x) >) = g(α),∀g(x)+ < p(x) >∈

K. Then φ is a ring homomorphism and φ(1+ < p(x) >) = φ(x+ <

p(x) >) = x = 1 6= 0. By result 1, φ is 1-1. By first isomorphism theorem,

K ∼= φ(K) ⊆ F (α) −→ (2). From (1) and (2), we get K = F (α). 2

Problem 1.1.10. Let p(x) = x2 + 1 ∈ R[x]. Then ±i are roots of p(x)

and ±i /∈ R. Thus p(x) is irreducible over R. Take α = i and K = R[i],

{1, α} is a basis for K over R and K = R[i] = {a0 = a1i : ai ∈ R} = C.

Problem 1.1.11. Let p(x) = x2− 2 ∈ Q[x]. Then ±
√

2 are roots of p(x)

and ±
√

2 /∈ Q[x]. Taking α =
√

2, {1,
√

2} is basis for K over Q. Thus

K = Q[
√

2] = {a0 + a1
√

2 : ai ∈ Q}.

Theorem 1.1.12. Let f(x) be any non-constant polynomial of degree n

over F . Then there exists an extension K of F such that K has a root of

f(x) and [K : F ] ≤ deg(f(x)).

Proof. If f(x) is irreducible, then by Theorem 3.2.24, there exists a

field extension K of F such that K has a root, say α, of p(x) and [K :

F ] = n. Suppose f(x) is reducible over F . Since F [x] is UFD, f(x) =

p1(x) · · · pt(x), where p′is are irreducible over F . clearly, deg(pi(x)) ≥

1. consider p1(x) ∈ F [x]. Then by Theorem 3.2.24, there is a field

extension K of F such that K has a root α of p1(x) and [K : F ] =
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deg(p1(x)). Clearly f(α) = 0 and α is a root of f(x) over F and [K :

F ] = deg(p1(x)) ≤ deg(f(x)). 2

1.1.1 Finite Extension

Definition 1.1.13. Let [K : F ] be a field extension. [K : F ] is a finite

extension if [K : F ] <∞.

Example 1.1.14. [Q(
√

2) : Q] = 2 and [Q(i) : Q] = 2

Theorem 1.1.15. Let [L : K] and [K : F ] be finite extensions. Then

[L : F ] is a finite extension and [L : F ] = [L : K][K : F ].

Proof. Let [L : K] = n and [K : F ] = m. Let {α1, α2, . . . , αn} be a basis

for L over K, where αi ∈ L and {β1, β2, . . . , βm} be a basis for K over

F , where βj ∈ K. Let B = {αiβj : i = 1, 2, . . . , n , j = 1, 2, . . . ,m} ⊆ L.

Then |B| = mn. Clearly, [L : F ] is a field etension. Since {α1, α2, . . . , αn}

is a basis for L over K, there exists a1, a2, . . . , an ∈ K such that u =

a1α1+a2α2+· · ·+anαn, for any u ∈ L. Since {β1, β2, . . . , βm} be a basis for

K over F , there exist bi1, bi2, . . . , bim ∈ F such that ai = bi1β1 + · · · bimβm.

⇒ u = a1α1 + a2α2 + · · ·+ anαn = (b11β1 + · · · b1mβm)α1 + · · ·+ (bn1β1 +

· · · bnmβm)αn. Thus B spans L over F . Since |B| <∞, dimF (L) <∞.

Suppose
n∑
i=1

m∑
j=1

dijβjαi = 0, where dij ∈ F ⊆ K. Then,

(
m∑
j=1

d1jβj)α1 + (
m∑
j=1

d2jβj)α2 + · · · + (
m∑
j=1

dnjβj)αn = 0, where βj, dij ∈ K.

Since {α1, α2, . . . , αn} is linearly independent in L over K,
m∑
j=1

dijβj = 0,

for i = 1, 2, . . . , n. Since {β1, β2, . . . , βm} is linearly independent in K
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over F , d1j = d2j = · · · = dnj = 0, for all j = 1 to m. Thus B is linearly

independent and so B is a basis for L over F . Hence [L : F ] = [L : K][K :

F ] = nm. 2

Corollary 1.1.16. Let [L : K], [K : F ] be field extensions. If either

[K : F ] =∞ or [L : K] =∞, then [L : F ] =∞.

Proof. Suppose [K : F ] = ∞, then dimF (K) = ∞ and there exists

α1, α2, . . . ∈ K such that {α1, α2, . . . , αn, . . .} is linearly independent in K

over F . Since L is a vector space over K, {1} is linearly independent in

L over K. Thus {1.αi : i ∈ N} ⊂ L is linearly independent in L over F .

Suppose [L : K] =∞, then dimK(L) =∞ and there exists α1, α2, . . . ∈

L such that {α1, α2, . . . , αn, . . .} is linearly independent in L over K. Since

K is a vector space over F , {1} is linearly independent in K over F .

Thus {1.αi : i ∈ N} ⊂ L is linearly independent in L over F . Hence

[L : F ] =∞. 2

Corollary 1.1.17. Let [K : F ] be a field extension. If [K : F ] = p is

prime. Find all subfields of K containing F .

Proof. Clearly, F,K are subfields of K containing F . Suppose E be

any subfield of K containing F . If [E : F ] = ∞, then [K : F ] = ∞,

which contradicts [K : F ] < ∞. If [K : E] = ∞, then [K : F ] = ∞,

which contradicts [K : F ] < ∞. Hence [E : F ], [K : E] < ∞ and

p = [K : F ] = [K : E][E : F ]. Thus [K : E] or [E : F ] is one and so
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K = E or E = F . Hence, F and K are only subfieldd of K containing

F . 2

Corollary 1.1.18. If [L : F ] is a finite extension and K is a subfield of

L containing F , then [K : F ] divides [L : F ].

Proof. Since [L : F ] < ∞, [K : F ], [L : K] < ∞. Thus [L : F ] = [L :

K][K : F ]. clearly F,K are subfields of K. Suppose E is any subfield of

K containing F . If [E : F ] = ∞, then [K : F ] = ∞, which contradicts

[K : F ] <∞. If [K : E] =∞, then [K : F ] =∞, which contradicts [K :

F ] < ∞. Hence [E : F ], [K : E] < ∞ and p = [K : F ] = [K : E][E : F ].

Thus [K : E] or [E : F ] is one and so K = E or E = F . Hence [K : F ]

divides [L : F ]. 2

1.1.2 Algebraic Extension

Definition 1.1.19. Let [K : F ] be a field extension and α ∈ K. α is

algebraic over F if f(α) = 0, for some f(x) ∈ F [x]. α is transcendental

element over F if α is not algebraic over F .

Example 1.1.20. Let α =
√

2 + i ∈ C. Is α algebraic over Q?

Proof. Let α =
√

2 + i ∈ C. Then α2 = 2− 1 + 2
√

2i = 1 + 2
√

2i.

⇒ (α2−1)2 = −8 and so α4−2α2+9 = 0. α is a root of x4−2x2+9 ∈ Q[x].

Thus α is algebraic over Q. 2
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Remark 1.1.21. If [K : F ] is field extension, then α is a root of x−α ∈

F [x], for all α ∈ F . Thus α is algebraic over F , for all α ∈ F .

Definition 1.1.22. Let [K : F ] be field extension, [K : F ] is algebraic

extension if α is algebraic over F, ∀α ∈ K.

Example 1.1.23. (i) C|R is algebraic extension.

(ii) C|Q is not algebraic extension.

Theorem 1.1.24. Any finite extension is algebraic.

Proof. Let [K : F ] be a finite extension and [K : F ] = n. Let α ∈ K.

Then 1, α, α2, . . . , αn ∈ K. Since [K : F ] = n, {1, α, . . . , αn} is linearly

dependent in K over F . There exists a0, a1, . . . , an(not all zero) such that

a0 + a1α + · · · + anα
n = 0 ans so α is a root of a0 + a1x + a2x

2 + · · · +

anx
n ∈ F [x]. This implies that α is algebraic over F and hence [K : F ] is

algebraic.

Converse need not true. 2

Problem 1.1.25. Find [Q(
√

2,
√

3) : Q]

Proof. We know that [Q(
√

2) : Q] = 2 and {1,
√

2} is a basis for Q(
√

2)

over Q.

[Q(
√

2,
√

3) : Q(
√

2)] = [Q(
√

2)(
√

3) : Q(
√

2)] = deg(x2 − 3) = 2.{1,
√

3}

is a basis for Q(
√

2)(
√

3) over Q(
√

2).

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2.2 = 4 and

{1,
√

2,
√

3,
√

6} is a basis for Q(
√

2,
√

3) over Q. 2
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Problem 1.1.26. Find [Q(
√

2,
√

3,
√

5) : Q]

Proof. [Q(
√

2,
√

3)(
√

5) : Q(
√

2,
√

3)] = deg(x2 − 5) = 2 and {1,
√

5} is

a basis for Q(
√

2,
√

3,
√

5) over Q(
√

2,
√

3).

[Q(
√

2,
√

3,
√

5) : Q] = [Q(
√

2,
√

3)(
√

5) : Q(
√

2,
√

3)][Q(
√

2,
√

3) : Q] =

2.4 = 8 and {1,
√

2,
√

3,
√

6,
√

5,
√

10,
√

15,
√

30} is a basis forQ(
√

2,
√

3,
√

5)

over Q.

In general, [Q(√p1,
√
p2, . . . ,

√
pn) : Q] = 2n, where p′is are prime. 2

Example 1.1.27. Give an example of inifinite algebraic extension.

Proof. Let K = {Q(√p) : p is prime}. Then K|Q is a field extension.

Claim: If p /∈ {p1, p2, . . . , pn}, then √p /∈ Q(√p1,
√
p2, . . . ,

√
pn).

If n = 0, then √p /∈ Q, ∀ prime p. Suppose n = 1. Assume that p /∈ {p1}

Claim: √p /∈ Q(√p1) = {a+ b
√
p1 : a, b ∈ Q}.

Suppose √p ∈ Q(√p1). Then √p = a + b
√
p1 6= 0 and p = a2 + b2p1 +

2ab√p1. If a = 0 and b 6= 0, then p = b2p1. ⇒ p1|p, which contra-

dicts (p, p1) = 1. If a 6= 0 and b = 0, then p = a2. ⇒ √p = a ∈ Q,

which is a contradiction. If a 6= 0, b 6= 0, then √p1 = p−a2−b2p1
2ab ∈ Q,

which is a contradiction. Hence √p /∈ Q(p1). Assume that the result is

true for n − 1. If p /∈ {p1, p2, . . . , pn−1}, then √p /∈ Q(√p1, . . . ,
√
pn−1).

Consider the field Q(√p1, . . . ,
√
pn) = Q(√p1, . . . ,

√
pn−1)(

√
pn). Sup-

pose √p ∈ Q(√p1, . . . ,
√
pn−1)(

√
pn). Then √p = a + b

√
pn, where

a, b ∈ Q(√p1, . . . ,
√
pn−1). If a = 0, b 6=, then p = b2p1. ⇒ p1|p, which

contradicts (p, p1) = 1. If a 6= 0 and b = 0, then p = a2. ⇒ √p = a ∈ Q,
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which is a contradiction. If a 6= 0, b 6= 0, then √p1 = p−a2−b2p1
2ab ∈ Q,

which is a contradiction. Hence √p /∈ Q(√p1, . . . ,
√
pn). Note that

[Q(√p1, . . . ,
√
pn) : Q] = 2n, for all n and so [K : Q] = ∞. For any

α ∈ K, Q{√p : p is prime} ⊂ R, there exists q1, q2, . . . , qm distinct primes

such that α ∈ Q(√q1, . . . ,
√
qm). Since [Q(√q1, . . . ,

√
qm) : Q = 2m <∞,

Q(√q1, . . . ,
√
qm) is algebraic. Thus α is algebraic over Q and [K : Q] is

algebraic extension. 2

Theorem 1.1.28. Let [K : F ] be a field extension, α ∈ K. Then α is

algebraic over F if and only if there exists a unique monic polynomial

mα,F (α) ∈ F [x] such that m(α) = 0.

Proof. Suppose α ∈ K is algebraic over F . Then f(α) = 0, for some

f(x) ∈ F [x]. Let S = {deg(h(x)) ∈ Z+ : h(x) ∈ F [x], h(α) = 0}. Then

S 6= φ and S ⊂ Z+. By well ordering principle, S has least element,say m.

Clearly, m ≤ deg(g(x)), for some g(x) ∈ F [x]. Let g(x) be the least degree

polynomial in F [x] such that g(a) = 0. Then h(α) 6= 0, for all h(x) ∈ F [x]

and deg(h(x)) < deg(g(x)). Let g(x) = a0 + a1x+ · · ·+ amx
m, am 6= 0. If

am = 1, then g(x) is a monic polynomial. Suppose am 6= 1. Then t(x) =

a−1
m g(x) and deg(t(x)) = deg(g(x)) = n and so t(x) is a monic polynomial

in F [x]. Suppose t(x) is irreducible, then by defn, t(x) = s(x)h(x), for

some s(x), h(x) ∈ F [x]. Since t(α) = 0, s(α)h(α) = 0, s(α), h(α) ∈ K.

Since K is integral domain, s(α) = 0 or h(α) = 0, which is a contradiction.

Suppose l(x) is a monic irreducible polynomial in F [x] such that l(α) = 0.

By division algorithm, there exists q(x), r(x) ∈ F [x] such that l(x) =
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q(x)t(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(t(x)). If deg(r(x)) <

deg(t(x)), then r(α) = l(α) − q(α)t(α) = 0, a contradiction. Hence

r(x) = 0 and l(x) = g(x)t(x). Since l(x) is irreducible, deg(l(x)) ≥ 1,

t(x) is not a unit, g(x) = u is unit in F and l(x) = ut(x). Since l(x) is

monic, leading coefficient of l(x) = 1. Thus l(x) = t(x).

Conversely, suppose there exists a unique monic polynomial mα,F (α) ∈

F [x] such that m(α) = 0. Then α is algebraic over F . 2

Definition 1.1.29. Let [K : F ] be a field extension and α ∈ K, α is

algebraic of degree n over F if α is a root of non-zero polynomial f(x) ∈

F [x] of degree n and p(α) 6= 0, ∀ p(x) ∈ F [x] and deg(p(x)) < deg(f(x)).

Theorem 1.1.30. Let f(x) ∈ F [x]. Then there is an extension K over

F such that all roots of f(x) lies in K and [K : F ] ≤ deg(f(x))!

Proof. If n = 1, then f(x) = ax+ b, a, b ∈ F, a 6= 0. Clearly −ba ∈ F and

f(−ba ) = 0. In this case, K = F and [K : F ] = 1!. Suppose n = 2. If f(x)

is reducible over F . Then f(x) = (a1x + b1) + (a2x + b2). −biai ∈ F be a

root of f(x). Here K = F, [K : F ] ≤ 2! = 1. Suppose f(x) is irreducible

over F , then there is an extension K of F such that K has a root of f(x)

and [K : F ] = 2. Clearly, K = F (α) and f(x) is reducible over F and

f(x) = (x − α)(x − β) and [K : F ] = 2 = 2!. Assume that the theorem

is true for all non-constant polynomials of degree< n. Let n ≥ 3 and α

be a root of f(x) in some extension of F . Then f(α) = 0 and so f(x) is

reducible over F [x]. Clearly, [F (α) : β] ≤ n and f(x) = (x−α)g(x), where

16



g(x) ∈ F (α)[x], deg(g(x)) = n− 1. By induction there is an extension F ′

of F (α) such that all roots of g(x) in F ′, [F ′ : F (α)] ≤ (n − 1)!. Thus

[F ′ : F ] = [F ′ : F (α)][F (α) : F ] ≤ (n − 1)!n = n! and α ∈ F ′. Hence all

roots of f(x) in F ′. 2

Definition 1.1.31. Let f(x) ∈ F [x] and [K : F ] be a field extension,

f(x) splits over K if f(x) =
k∏
i=1

(axi + bi), where ai, bi ∈ K. A field K is

a splitting field for f(x) over F if (i) All roots of f(x) lies in K. (ii) If

E is any proper subfield of K, then f(x) is not split over F or K is the

smallest field containing all roots of f(x) over F .

Theorem 1.1.32. If α ∈ K is algebraic over F and f(α) = 0, for some

f(x) ∈ F [x], then mα,F divides f(x)

Proof. Let f(x) ∈ F [x] and mα,F ∈ F [x]. By division algorithm, there

exists q(x), r(x) ∈ F [x] such that f(x) = q(x)mα,F + r(x), where r(x) = 0

or deg(r(x)) < deg(mα,F ). Also, r(α) = f(α)− q(α)mα,F = 0. By choice

of mα,F , r(x) = 0. Thus f(x)q(x)mα,F and mα,F divides f(x). 2

Theorem 1.1.33. Let σ : K1 → K2 be an isomorphism, if f(x) ∈ K1[x]

and σf(x) ∈ K2[x]. If E1 is a splitting field of f(x) over K1 and E2 is

splitting field of σf(x) over K2. Then there is an isomorphism from E1

onto E2

Proof. Clearly E1|K1, E2|K2 are field extensions. If [E1 : K1] = 1, then

dimK1(E1) = 1 and so E1 = K1. f(x) = (x − α1) · · · (x − αt), where
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αi ∈ E1. Now, σ(f(x)) = σ(x − α1) · · ·σ(x − αt) = (x − σ(α1)) · · · (x −

σ(αt)). Since F2 is a splitting field of σ(f(x)), F2 ⊆ K2 ⊆ E2. Hence

σ : E1 → E2 is an isomorphism. Assume that theorem is true for [E1 :

K1] ≤ n. Let [E1 : K1] = n > 1. Since f(x) ∈ K1[x] and K1[x] is UFD,

f(x) = p1(x)p2(x) · · · pt(x). If deg(p1(x)) = 1, for all i, then pi(x) =

ai(x) + bi,−biai ∈ K1 is a root of pi(x) and f(x). Since E1 is the splitting

field of f(x) over K, E1 ⊆ K1 ⊆ F1, Thus [E1 : K1] = 1, a contradiction.

Hence, deg(pi(x)) > 1, for some i. Let α1 be a root of p1(x) and α2 be

a root of σ(f(x)). Then there is an isomorphism θ : K1(α1) → K2(α2).

Then the splitting field of f(x) over K1(α1) is E1 and the splitting field

of σ(f(x)) over K2(α2).[E1 : K1] = [E1 : K1(α1)][K1(α1) : K1].

⇒ [E1 : K1(α1)] = [E1:K1]
[K1(α1):K1] < n. By induction, there is an isomorphism

from E1 onto E2. 2

Let us sum up:

• Extension fields and finite extension.

• Algebraic of degree n over the field F .

• Algebraic extension.

• Algebraic number and Transcendental number.

• Fundamental theorem of Algebra.
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Check your progress

1. If Q[
√

3] = {a + b
√

3 : a, b ∈ Q} is a field extension of Q. Hence

[Q[
√

3] : Q] =

2. A complex number is said to be an algebraic number if it is algebraic

over the field of —

1.2 Transcendental

Definition 1.2.1. An element α ∈ C is called transcendental over Q if α

is not algebraic over Q.

Example 1.2.2. Let α = π. Then α is not algebraic over Q and so α is

transcendental over Q.

Clearly α is algebraic over R and so is transcendental over R.

Theorem 1.2.3. The number e is transcendental.

Proof. Let f(x) ∈ R[x] and deg(f(x)) = r. Let F (x) = f(x) +

f (1)(x)+f (2)(x)+ · · ·+f(r)(x). Clearly, f (r+1)(x = 0.) Now d
dx(exF (x)) =

e−xF
′(x)− e−xF (x) = −e−xf(x).

(Mean Value Theorem: If g(x) is a continuous differentiable, single valued

function on [a, b], then g(a)−g(b)
a−b = g

′(a+ θ(b− a)) where, 0 < θ < 1.)

Apply Mean value theorem of e−xF [x] on [0, 1] we get, e−1F (1)−F (0) =

−eθ1f(θ1) =⇒ F (1)− eF (0) = −e1−θ1f(θ1) = ε1, 0 < θ1 < 1.

On [0, 2], e
−2F (2)−F (0)

2 = e−2θ2f(2θ2)
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F (2)− e2F (0) = −2e−2(1−θ2)f(2θ2) = ε2.

On [0, n], F (n)− enF (0) = −ne−n(1−θn)f(nθn) = εn, 0 < θn < 1.

In general, On [0, n], F (n)−enF (0) = −ne−n(1−θn)f(nθn) = εn · · · · · · · · · (1)

Suppose that, e is an algebraic number. Then, there exists

f(x) = c0 + c1x+ · · ·+ cnx
n ∈ Z[x],

c0 > 0 such that f(e) = 0.

Clearly, c0 + c1e+ c2e
2 + · · ·+ cne

n = 0 · · · · · · · (2).

Now, c1ε1 + c2ε2 + · · ·+ cnεn = c1(F (1)− eF (0)) + c2(F (2)− e2F (0)) +

· · · + cn(F (n) − enF (0)) = c1F (1) + · · · + cnF (n)(c1e + c2e
2 + · · · +

cne
n)F (0)c1F (1) + · · ·+ cnFn+ c0F0 = c0F (0) + c1F (1) + · · ·+ cnF (n).

Hence c1ε1 + · · ·+ cnεn = c0F (0) + c1F (1) + · · ·+ cnF (n) · · · · · · · · · (3)

Choose any prime p > n and p > c0. Consider

f(x) = 1
(p− 1)!x

p−1(1− x)p(2− x)p · · · (n− x)p.

Let

F (x) = f(x) + f
′(x) + · · ·+ f r(x).

Clearly, f(x) has a root of multiplicity p at x = 1, 2, · · · , n.

From this, f(j) = 0, f ′(j) = 0, f ′′(j) = 0 · · · , f r−1(j) = 0 for all j =

1, 2, · · · , n.

Also f(x) has a root of multiplicity p− 1 at x = 0.

Clearly, f(x) = (n!)p
(p−1!)x

p−1 + a0
(p−1)!x

p + · · ·+ ai ∈ Z

For i, p, f i(x) ∈ Z[x]and the coefficients of f i(x) are multiples of p. and
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so for integer j, f i(j) is multiple of p. Since F (x) = f(x)+f
′(x)+f 2(x)+

· · ·+ f p−1(x) + f p(x) + f r(j).

For j = 1 to n, F (j) is an integer and multiple of p. Clearly, f(0) =

f
′(0) = · · · = f p−1(0) = 0.

For i ≥ p, f i(0) ∈ Z and is multiple of p. but f p−1(0) = (n!p

Since p ≥ n, p - n! =⇒ p - (n!)p

F (0) = f(0) + f 1(0) + · · · + f (p−2)(0) + f (p−1)(0) + f (p)(0) + · · · + f r(0).

Hence p - F (0). p/F (1), · · · , p/F (n).

From this, c0F (0) + c1F (1) + · · ·+ cnF (n)is an integer and is not divisible

by p.

By (3), c0F (0) + c1F (1) + · · ·+ cnF (n) = c1ε1 + · · ·+ cnεn.

εi = −iei(1−θi)f(iθi), 0 < θ1 < 1.

εi = −ie
i(1−θ1)(iθ1)p−1(1− iθ1)p · · · (n− iθ1)p

(p− 1)!

|ε1| ≤
n

(p− 1)!e
nnp−11p2p · · ·np = nnp−1en(n!)p

(p− 1)!

|εi| ≤ en(n!)pnp
(p−1)!

as p→∞, |εi| ≤ en(n!)pnp
(p−1)! → 0.

Thus we can find a large prime p such that, p > c0, and p > n,

|c0ε1 + · · ·+ cnεn| < n =⇒ c1ε1 + · · ·+ cnεn = 0.

c0F (0) + · · ·+ cnF (n) = c1ε1 + · · ·+ cnεn = 0.

p|0 =⇒ p|c0F (0) + · · · + cnF (n), which is a contradiction. Hence p is

not algebraic over Q.

2
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Let us sum up:

• The number e is transcendental.

• em/n is transcendental (m > 0, n are integers).

Check your progress 5.2

1. The number e is called —

2. If a, b ∈ K are algebraic over F of degrees m and n, then F (a, b) =

Unit Summary:

In this unit, we recalled the basic of rings and commutative ring with unit

element. Next, we introduced fields and analyzed the characteristics of

fields. Further studied how to extend a field to extension field and the

concept of algebraic extensions. Finally we showed that the number e is

transcendental.

Glossary:

• [K : F ] is the dimension of K over F .

• [L : F ] = [L : K][K : F ].

• [F (a) : F ] = n If a ∈ K is algebraic of degree n over F.

• The number e is transcendental.
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Self Assessment Questions

1. Show that the number e is transcendental.

2. If a ∈ K is algebraic over F, then prove F (a) is a finite extension of

F.

3. If F (a) is a finite extension of F, then prove a ∈ K is algebraic over

F.

4. Prove that the mapping ψ : F [x]→ F (a) defined by h(x)ψ = h(a) is

a homomorphism.

Exercises

1. In R,
√

2 and
√

3 are both algebraic over Q. Exhibit a polynomial

of degree 4 over Q satisfied by
√

2 +
√

3. Find the degree of
√

2 +
√

3

over Q and degree
√

2
√

3 over Q.

2. If m > 0 and n are integers, prove that e
m

n is transcendental.

3. What is the degree of
√

2 +
√

3 over Q ? Prove your answer.

4. If a is an algebraic integer and m is an ordinary integer, prove

(a) a+m is an algebraic integer.

(b) ma is an algebraic integer.

Answers for check your progress

Section 1.1

1. 2
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2. Rational numbers

Section 1.2

1. Transcendental

2. F (b, a)
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Unit 2

More About Roots

Objectives:

• Know to field and extension field over ring polynomials.

• To introduced splitting field with properties.

• To study more about roots of polynomials.

• Know to the concept of simple extension.

2.1 Roots of Polynomials

Definition 2.1.1. If p(x) ∈ F (x), then an element a lying in some ex-

tension field of F (k) is called a root of p(x) if p(a) = 0.

Lemma 2.1.2. If p(x) ∈ F [x] and K is an extension of F , then for any

element b ∈ K, p(x) = (x − b)q(x) + p(b) where q(x) ∈ K[x]. and

degq(x) = degp(x)− 1.
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Proof. Since F ⊂ K,F [x] is contained in K[x]. we can consider p(x) to

be lying in k[x].

By the division algorithm for polynomial in k[x].

p(x) = (x− b)q(x) + r(x)

where q(x) ∈ k[x] and r = 0 (or) degr < deg(x− b).

This gives either r = 0 (or) deg r = 0, either r must be an element of K.

Since p(x) = (x− b)q(x) + r

P (b) = 0 + r ⇒ r = P (b)

Thus, p(x) = (x− b)q(x) + p(b).

Then,
degp(x) = deg[(x− b)q(x) + p(b)]

degp(x) = deg(x− b) + degq(x) + degp(b)

degp(x) = 1 + degq(x) + 0

degp(x)− 1 = degq(x)

Hence proved. 2

Corollary 2.1.3. If a ∈ K is a root of p(x) ∈ F [x], whereF ∈ K, then

in K[x], (x− a) | p(x).

Proof. Since p(x) ∈ F [x] and F ∈ K, then p(x) ∈ F [x]. but a ∈ k, then

by lemma 2.1.1, in k[x],

p(x) = (x− a)q(x) + p(a),
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where q(x) ∈ K[x] and degp(x)− 1 = degq(x).

Since a ∈ K is a root of p(x) then p(a) = 0.

⇒ p(x) = (x− a)q(x)

⇒ (x− a) | p(x) in k[x].

2

Definition 2.1.4. The element a ∈ K is a root of p(x) ∈ F [x] of multi-

plicity m if (x− a)m | p(x), whereas (x− a)m+1 f p(x).

Lemma 2.1.5. A polynomial of degree n over a field can have atmost n

roots in any extension fields.

Proof. Proof: Let us prove this result by using induction on n, the

degree of the polynomial P (x).

If p(x) is of degree 1, then it must be of the form αx+β, where α, β ∈ F

and α 6= 0.

Any ’a’ such that p(a) = 0 implies that αa+ β = 0.

⇒ a = −β
α

That is, p(x) has the unique root −β/α.

Therefore, the result is true in this case.

Assume that the result is true in any field for all polynomials of degree

less than n.
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Suppose that p(x) is of degree n over F . Let k be any extension of F . If

P (x) has no roots in K, then for the number of roots in k, namely zero,

is definitely at most n.

So, suppose that P (x) has at least one root a ∈ k and ‘ a ’ is a root of

multiplicity m.

Since (x− a)m | p(x),m ≤ n, then

P (x) = (x− a)mq(x), q(x) ∈ K[x]

and deg q(x) = n−m.

From (x− a)m+1 - p(x),

we get

(x− a) - q(x).

By corollary to lemma 2.1.1, ‘ a ’ is not a root of q(x).

If a 6= b ∈ K is a root of P (x), then p(b) = 0

⇒ (b− a)mq(b) = 0

⇒ q(b) = 0,

since (b− a) 6= 0.

That is, any root of p(x), in K, other than ‘ a ’, must be a root of

q(x). since, degree of q(x) = n − m, which is less than n, then by our

induction hypothesis, q(x) has at most n−m roots in K, which together

with the other root ‘ a ’, counted m times, gives that p(x) has at most

m+ (n−m) = n roots in k.
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Hence proved. 2

Theorem 2.1.6. If p(x) is a polynomial in F [x] of degree n ≥ 1 and is

irreducible over F , then there is an extension E of F , such that [E : F ] =

n, in which p(x) has a root.

Proof. Let F [x] be the ring of polynomials in x over F . and let V =

(p(x)) be the ideal of F [x] generated by p(x).

By lemma ”The ideal A = (P (x)) in F [x] is a maximal ideal if and

only if p(x) is irreducible over F”, we have

V is a maximal ideal of F [x].

Then by theorem ”If R is a commutative ring with unit element and

M is an ideal of R, then M is a maximal ideal of R if and only if R/M is

a field”, we have

E = F [x]/v

is a field.

First to show that E is an extension of F .

Let F̄ be the image of F in E. i.e., F̄ = {α+ V | α ∈ F} We assert that

F̄ is a field isomorphic to F .

If ψ : F [x]→ E, defined by

f(x)ψ = f(x) + V ∀f(x) ∈ F [x]

then the restriction of ψ to F induces an isomorphism of F onto F .

By using this isomorphism, consider E to be an extension of F .
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We claim that, E is a finite extension of F of degree n =deg p(x), for the

elements

1 + V, x+ V, (x+ V )2 = x2 + V, . . . , (x+ V )i = xi + V, . . . ,

(x+ V )n−1 = xn−1 + V.

form a basis of E over F .

Let ’ a ’ be any element in the field E, such that

a = xψ = x+ V

Given f(x) ∈ F [x]

To claim that f(x)ψ = f(a). since ψ is a homomorphism and if

f(x) = β0 + β1x+ β2x
2 + · · ·+ βkx

k,

then

f(x)ψ = β0ψ + (β1x)ψ +
(
β2x

2)ψ + · · ·+
(
βkx

k
)
ψ

= β0ψ + (β1ψ) (xψ) + (β2ψ) (x2ψ) + · · ·+ (βkψ)
(
xkψ

)

By using the identification indicated βψ with β,

f(x)ψ = β0 + β1(xψ) + β2
(
x2ψ

)
+ · · ·+ βk

(
xkψ

)
= β0 + β1(x+ V ) + β2

(
x2 + V

)
+ · · ·+ βk

(
xk + V

)
= β0 + β1(x+ V ) + β2(x+ V )2 + · · ·+ βk (x+ V )k

= β0 + β1a+ β2a
2 + · · ·+ βka

k

= f(α)
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⇒ f(x)ψ = f(a).

since p(x) ∈ V andV is a maximal ideal of F [x], then

p(x)ψ = 0

But, p(x)ψ = p(a)

⇒ p(a) = 0

Thus, the element a = xψ in E is a root of p(x). 2

Let us sum up:

• Remainder Theorem.

• Roots of the polynomial and Roots of multiplicity.

• Reducible and irreducible of the polynomial.

• Splitting field.

Check your progress

1. If a is root of p(x) ∈ F [x] of multiplicity m then —

2. The splitting field of f(x) = x2 − 3 over Q is —
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2.2 More About Roots

Definition 2.2.1. Let f(x) ∈ F [x] and α ∈ K be a root of f(x) in some

extension K of F. α is a multiple root of f(x) with multiplicity m if

(x− α)m|f(x) and (x− α)m+1 6 |f(x).

If m = 1, then α is a simple root of f(x). If f(x) is separable, it has

no multiple roots. Let f(x) = a0 + a1x + · · · + anx
n ∈ F [x]. Then,

fx = a1 + 2a2x+ · · ·+ nanx
n−1 ∈ F [x].

(f(x) + g(x))′ = f
′(x) + g

′(x), (αf(x))′ = αf
′(x) and (f(x)g(x))′ =

f
′(x)g(x) + g

′(x)f(x).

Theorem 2.2.2. Let f(x) ∈ F [x]. Let α be a root of f(x). Then α is a

multiple root of f(x) iff f
′(α) = 0.

Proof. Suppose α is a multiple roots of f(x) with mutliply m > 1. By

definition, (x− α)m|f(x) and (x− α)m+1 does not divide f(x). That im-

plies, f(x) = (x−α)mg(x), for some g(x) ∈ K[x]. f ′(x) = (x−α)mg′(x)+

m(x−α)m−1g(x). Therefore, f ′(x) = 0. Conversely, f ′(α) = 0, Suppose α

is not a multiple root of f(x). Then α is a simple root of f(x). By remain-

der theorem, f(x) = (x − α)q(x) for some g(x) ∈ F [x], g(α) 6= 0. That

implies, f ′(x) = (x − α)q′(x) + q(x), f ′(α) 6= 0, which is a contradiction

to f ′(α) = 0. Therefore, α is a multiple root of f(x). 2

Corollary 2.2.3. Let f(x) ∈ F [x]. Then f(x) has no multiple root if and

only if (f(x), f ′(x)) = 1.
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Proof. Suppose, f(x) has no multiple root, Clearly (f(x), f ′(x)) ∈ F [x].

Let (f(x), f ′(x)) = deg(d(x)) ≥ 1. Then f(x) = λ1(x)d(x) and f
′(x) =

λ1(x)d(x) for some λ(x), λ1(x) ∈ F [x]. Let α be a root of d(x). Then

d(α) = 0. Then, f(α) = 0. α is a multiple root of f(x), which is a

contradiction.

Conversely, (f(x), f ′(x)) = 1, Suppose f(x) has multiple roots say α.

Then α is a root of f ′(x), (x − α)|f(x) and (x − α)|f ′(x). That implies,

(f(x), f ′(x)) = (x − α)λ(x) for some λ(x) 6= 1, which is a contradiction.

Hence f(x) has no multiple roots. 2

Proposition 2.2.4. Let xpn−x ∈ F [x] where char(F ) = p, f(x) has no

mulitple root.

Proof. Let f(x) = xp
n−x ∈ F [x]. Then f ′(x) = pnxp

n−1 − 1 = 0− 1 = 1.

Also f
′(x) = −1. Therefore (f(x), f ′(x)) = 1 if and only if f(x) has no

multiple roots. 2

Proposition 2.2.5. Let char(F ) = 0. If f(x) is irreducible over F , then

f(x) has no multiple root.

Proof. Clearly, f ′(x) ∈ F [x] and deg(f ′(x)) < deg(f(x)). Since f(x) is

irreducible, f(x) and 1 are the only factors of f(x). Therefore, f ′(x) is

not divisible by f(x), and hence 1 is the only common factor of f(x) and

f ′(x). Thus, (f(x), f ′(x)) = 1. By Corollary 2.2.3, f(x) has no multiple

roots. 2
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Corollary 2.2.6. If f(x) is irreducible over a field F where F is a subfield

of K, then f(x) has no multiple roots.If f(x) is irreducible over a field F

where F is a subfield of K, then f(x) has no multiple roots.

Proof. Clearly char(F ) = 0 and the proof follows from the above proof.

2

2.2.1 Simple Extension

Definition 2.2.7. A simple extension of F is an extension K of F such

that K = F (a) for some a ∈ K.

Example 2.2.8. Q(
√

2)|Q , Q(
√

3)|Q Q(
√

5)/Q are simple extensions.

Problem 2.2.9. Is Q(
√

2,
√

3)|Q simple?

Proof. Note that
√

2,
√

3 ∈ Q(
√

2,
√

3) and
√

2 +
√

3 ∈ Q(
√

2,
√

3).

Therefore, Q(
√

2 +
√

3) ⊆ Q(
√

2,
√

3). Let
√

2 +
√

3 ∈ Q(
√

2 +
√

3),

α = 1
(
√

2+
√

3) . Then α =
√

2−
√

3
(
√

2+
√

3)(
√

2−
√

3) = −(
√

2 −
√

3) ∈ Q(
√

2 +
√

3).

Hence, 2
√

3 ∈ Q(
√

2 +
√

3)
√

2,
√

3 ∈ Q(
√

2 +
√

3) and so Q(
√

2,
√

3) ⊆ Q(
√

2 +
√

3).

Therefore, Q(
√

2,
√

3) = Q(
√

2 +
√

3) is a simple extension. 2

Proposition 2.2.10. Let F be a finite field of order pn. Then (F×, ·) is

cyclic.
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Proof. Let |F | = pn. Then (F×,+, ·) is an abelian group and |F×| =

pn − 1.

Let α be a maximum order element in F× and let m = ord(α). Then

|β|/|α| for all β ∈ F×. For β ∈ F×, βm = βt|β| = (β|β|)t = 1. β is a root of

xm − 1, where forallβ ∈ F×. Since αm = 1, 1, α, α2, . . . , αm are distinct

elements inF×. |F×| ≥ m | |F×| = m > α. Therefore, F× is a cyclic group

generated by α, and α is a primitive element in F . 2

Proposition 2.2.11. Let G be a simple finite abelian group. Let a be the

maximum order element in G. Then |b| divides |a| for all b 6= a in G.

Proof. Suppose there is an element b 6= e ∈ G such that |b| - |a|. Then,

ab ∈ G, |ab| = gcd(|a|, |b|), lcm{(|a|, |b|)} > |a| which is a contradiction

to choice of a. Hence, |b|/|a| for all b 6= e in G. 2

Theorem 2.2.12. Let f(x) ∈ F [x], where char(F ) = p (prime). Then

f ′(x) = g(xp) for some g(x) ∈ F [x].

Proof. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n. Then, f ′(x) = a1 +

2a2x+ 3a3x
2 + · · ·+ nanx

n−1.

Suppose f ′(x) = 0. Then, 1 · a1 + 2 ·2 x+ 3 · a3x
2 + · · ·+ nanx

n−1 = 0.

Since F [x] is a vector space over F , {1, x, x2, · · · , } is a basis for F [x]

over F.and {1, x, x2, . . . , xn−2, xn−1} is a linearly independent in F [x] over

F. we have a1 = 2a2 = · · · = (n − 1)an−1 = nan = 0. am = 0if p - m.

Therefore, f(x) = a0 + apx
p + a2px

2p + · · ·+ atpx
tp = g(xp), where g(x) =

a0 + apx+ a2px
2 + · · ·+ atpx

t ∈ F [x].
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Conversely, suppose f(x) = g(xp), where g(x) = b0 +b1x+· · ·+bmxm ∈

F [x]. Then, f(x) = b0 + b1x
p+ b2x

2p+ · · ·+ bmx
mp, and f ′(x) = pb1x

p−1 +

2pb2x
2p−1 + · · ·+mpbmx

mp−1.

Since char(F ) = p, we have f ′(x) = 0. 2

Proposition 2.2.13. Let char(F ) = 0 and f(x) ∈ F [x]. If f ′(x) = 0,

then f(x) is a constant polynomial.

Proof. f ′(x) = 0⇒ a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 = 0.

Since char(F ) = 0, F is a field of characteristic zero,Q is a subfield

of F, Since {1, x, x2, . . . , xn−1} is a linearly independent in F [x] over F .

mam = 0, for all m = 1 to n. → am = 0. Hence, f(x) = a0 is a constant

polynomial. 2

Theorem 2.2.14. Let f(x) ∈ F [x] be an irreducible polynomial over F .

Then all the roots of f(x) have the same multiplicity.

Proof. Let f(x) ∈ F [x] be an irreducible polynomial. If char(F ) = 0,

then f(x) has no multiple roots. Hence, all its roots have multiplicity

1.Assumechar(F ) = p (prime). Let α be a root of f(x) with multiplicity

m. Let f(x) = (x − α)mg(x) for some g(x) ∈ F (α)[x]. → g(α) 6= 0, Let

f(x) = a0 +a1x+ · · ·+anxn Let β be the root of f(x) and β 6= α. Consider

I : F → F is an identity isomorphim. Then I(f(x)) = f(x). By theorem,

there exists an isomorphism σ : F (α)→ F (β) such that σ(α) = I(α) for

all α ∈ F and σ(α) = β.Then, σ(f(x)) = σ(a0)+σ(a1)x+ · · ·+σ(an)xn =
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a0 + a1x+ · · ·+ an

σ(f(x)) = f(x) = σ((x − β)m(g(x)).we have f(x) − σ(f(x)) = (x −

β)mσ(g(x)). Claim: σ(g(β)) 6= 0 Let g(x) = b0 + b1x + · · · + bmx
m ∈

F (α)[x].

Thenσ(g(x)) = σ(b0) + σ(b1)x+ · · ·+ σ(bm)xm

= σ(b0) + σ(b1)β + · · ·+ σ(bm)βm

= σ(b0) + σ(b1)σ(α) + · · ·+ σ(bm)σ(α)m

= σ(b0 + b1α + · · ·+ bmα
m)

= σ(g(α)) 6= 0. Therefore, β is not root of σ(g(x)).

By definition, β is a root of f(x) with multiplicity m. 2

2.2.2 Separable Extension

Definition 2.2.15. Let [K : F ] be a field extension. An element α ∈ K is

separable over F if f(α) = 0 for some separable polynomial f(x) ∈ F [x].

[K : F ] is separable extension if α ∈ K is separable over F, for all α ∈ K.

Proposition 2.2.16. Let char(F ) = 0. Then any algebraic extension of

F is separable.

Proof. Let [K : F ] be any algebraic extension. For any α ∈ K, α

is a root of some minimal polynomial mα(x) ∈ F [x]. Since mα(x) is

irreducible and char(F ) = 0, mα(x) is separable over F . Hence, [K : F ]

is a separable extension. 2

Example: K = Q(√p: p is prime )is an infinite algebraic extension.
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Theorem 2.2.17. Let f(x) = xp − a ∈ F [x], where char(F ) = p. Then

either f(x) is irreducible over F (or) f(x) is the pth power of a linear

polynomial.

Proof. Let f(x) = xp − a ∈ F [x]. Let b be a root of f(x) in some

extension K of F . Then F (b) = 0, bp − a = 0 =⇒ a = bp ∈ F .

Therefore, f(x) = xp − bp = (x − b)p. If b ∈ F , then f(x) = (x − b)p.

Suppose, b /∈ F . Since b is a root of f(x) over F , b is algebraic over F .

Let mb(x) be the minimal polynomial of b over F . Then mb(x) | f(x).

Since f(x) = (x − b)p, if b ∈ F, then f(x) = (x − b)p. Suppose b is a

root of f(x) over F, b is algebraic over F. mb,F (x)/f(x) or mb,F (x) ∈ F [x]

we have f(x) = (x − b)t for some t ≤ p. Then b is a root of q(x) and

q(x) = mb,F (x) = (x− b)t.

Sincmb,F (x) | f(x), we have f(x) = mb,F (x) · ηb,F (x) · · · ηb,F (x) = (x−

b)tm. Since deg(f(x)) = p , p = tm and p is prime, t = 1 or m = 1.

t = 1, then mb,F (x) = x − b =⇒ ∈ F, which is a contradiction. Hence,

m = 1, t = p, f(x) = (x − b)t = (x − b)p = mb,F (x).Hence, f(x) is

irreducible over F . 2

Theorem 2.2.18. Let char(F ) = p. Then every algebraic extension of F

is separable if and only if F = F p.

Proof. Let F n
p = {αp : α ∈ Fpn} and σ : Fpn → Fpn by σ(α) = αp =⇒

σ ∈ Aut(Fpn). (σ) = Fpn = {αp : α ∈ Fpn}. suppose, any algebraic

extension of F is separable, For any α ∈ F, Lef(x) = xp − a ∈ F [x] then
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b is a root of f(x) in some extension of F and K = F (α) [F (b) : F ] =

deg(g(x)) < ∞, =⇒ F (b)/F is algebraic. By hypothesis, F (b)/F is

separable and b is separable over F. Suppose b /∈ F . Then by previous

theorem, f(x) is irreducible over F and f ′(x) = pxp−1. f ′(b) = pbp−1 = 0

→ b is a root of both f(x) and f ′(x), By theorem, b is a multiple root of

f(x) and so =⇒ b is not separable over F . which is a contradicition.f

Hence,b ∈ F, bp − a = 0 =⇒ a = bp ∈ F p =⇒ F ⊆ F p For any,

y ∈ F , y = dp for some d ∈ F =⇒ y ∈ F =⇒ F p ⊆ F . Hence,

F = F p. Let [K : F ] be any algebraic extension. Suppose [K : F ] is not

separable.Then, there exists α ∈ K,α /∈ F1, such that α is not separable

over F. =⇒ mα,F ′(x) = 0. =⇒ mα,F (x) = g(xp) for some g(x) ∈

F [x].Put g(x) = a0 +a1x+ · · ·+amx
m ∈ F [x]. Since ai ∈ F, and F = F p,

ai = bpi g(x) = bp0+bp1x+· · ·+bpmxm = (b0+b1x+· · ·+bmxm)p =⇒ mα,F (x)

is irreducible over F . which is a contradiction to mα,F (x) is irreducible

over F . 2

Definition 2.2.19. A field F is perfect if all finite extensions of F are

separable.

(1) Let [K : F ] be any finite extension. Then [K : F ] is algebraic.

For any a ∈ K, let ma(x) be the minimal polynomial of a over F . Since

char(F ) = 0, ma(x) is separable over F . Hence [K : F ] is a separable

extension. Therefore, F is perfect.
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(2) If char(F ) = 0 and [K : F ] is any finite extension, then [K : F ] is

a separable extension. Hence, F is perfect.

Theorem 2.2.20. Let F be a field and char(F ) = p. Then F is perfect

if and only if F = F p.

Proof. Suppose F is perfect. Then by definition, every finite extension

K of F is separable. [K : F ] is algebraic, [K : F ] is separable ⇒ F =

F p.Conversely, F = F p. Let [K : F ] be any finite extension.

Then[K : F ] is algebraic and [K : F ] is separable. Therefore, F is

perfect. 2

Theorem 2.2.21. Let [K : F ] be a finite separable extension. Then

K = F (a) for some a ∈ K.

Proof. Since, [K : F ], is finite, K = F (α1, α2, · · ·αn). where {α1, α2, · · ·αn}

is a basis for K over F. Suppose, F is a finite field. Clearly, K =

{a1α1 + a2α2 + · · · + anαn : ai ∈ F} Consider, F = Fmp and |K| =

(pm)n = pmn =⇒ K = Fpmn. Fpmn =< α >= Fpmn(α) =⇒ [K : F ] is

simple extension.

Suppose, F is an infinite field.Then |K| < ∞ we prove by induction

on n, when n = 2, For any α, β ∈ K,α 6= β, α, β are separabl over F.

mα,F (x),mβ,F (x) are separable over F. α = {a1, a2, . . . , am} be a root of

mα,F (x). β = {b1, b2, . . . , bn} be a root of mβ,F (x).
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Consider the equation, (α − ai) + (β − bj)x = 0 for i = 1 to m, j = 1 to

t. Since F is infinite, there exists γ ∈ F, such that

(a−ai)+γ(β−bj)x 6= 0, α+γβ 6= ai+γbj for all i, j. Let λ = α+γβ ∈ K.

Therefore, h(x) = mα,F (λ−γx). Then, h(β) = mα,F (λ−γx) = mα,β(α) =

0. Therefore, β is a root of both h(x) and mβ,F (x). Suppose bj is a root

of h(x) for some j ≥ 2. Then h(bj) = mα,F (λ − γbj) = 0.λ − γbj is a

root of mα,F (x). Since {a1, a2, · · · , an} are roots of mα,F (x). λ, γbj = ai

for some i. λ = ai + γbj which is contradiction λ 6= ai + γbj for all i, j.

Therefore, b1 is the only common root to both h(x) and mβ,F (x). Since,

F ∈ F (λ),mβ,F (x) ∈ F (λ)[x]. Since, b1(x) ∈ F (λ)[x], mβ,F (x), h(x)) =

(x − β) ∈ F (λ)[x]. =⇒ β ∈ F (λ) and γβ ∈ F (λ). Since, λ = α +

βγ ∈ F [λ], λ − βγ = α ∈ F (λ). =⇒ K = F (α, β) ⊆ F (λ) =⇒

F (λ) = F (α, β) = K. Therefore, [K : F ] is simple extension. Assume

that the theorem is true for n − 1, Then K = F (α1, α2, · · ·αn) = F (δ)

for some δ ≤ k. Since K = F (α1, α2, · · ·αn) = F (α1, α2, · · ·αn− 1)(αn) =

F (δ)(αn) = F (δ, αn) = F (λ′) =⇒ λ
′ ∈ K. Therefore, [K : F ] is simple

extension. 2

Theorem 2.2.22. Let f(x) = xp
n − x ∈ F [x]. Then f(x) is the product

of distinct irreducible polynomials p(x) and deg(p(x)) divides n.

Proof. Since F [x] is a unique factorization domain, f(x) = P1(x) · · ·Pk(x)

where each Pi(x) is irreducible over F of degree di. Pi(x) 6= pj(x).

Consider Pi(x), Then by the above theorem, Pi(x)|xpdi − x over F .

All roots of Pi(x) lie in Fpdi and Fpdi = F (αi), where αi is a root of
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Pi(x)fori = 1tot..and f(αi) = 0, so αi ∈ Fpn and F (αi) ⊆ Fpn, |F [αi]| =

pdi and F (αi) is a subfield of Fpn.

Thereforedi|n. 2

Let us sum up:

• Derivative of the polynomial.

• Nontrivial common factor.

• Simple extension.

• Seperable and perfect.

Check your progress

1. If f(x) ∈ F [x] is irreducible with characteristic of F is 0, then f(x)

has —

2. If F is of characteristic 0 and f(x) ∈ F [x] then —

Unit Summary:

In this unit, we studied the field and extension field over ring polynomials.

In addition, we introduced splitting field with properties. Also, analysed

more about roots of polynomials. Finally, we introduced the concept of

simple extension.
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Glossary:

• Remainder theorem.

• Extension field.

• Splitting fields.

• If xpn − x ∈ F [x] for n ≥ 1, has distinct roots.

• Simple extension.

Self Assessment questions

1. Show that the any two splitting fields of the same polynomial over a

given field F are isomorphic by an isomorphism leaving every element

of F fixed.

2. The polynomial f(x) ∈ F [x] has a multiple root if and only if f(x)

and f ′(x) have a nontrivial common factor.

3. A polynomial of degree n over a field can have at most n roots in

any extension field.

4. There is an isomorphism τ ∗∗ of F [x]/(f(x)) onto F ′[t]/(f ′(t)) with

the property that for every α ∈ F , ατ ∗∗ = α
′
, (x + (f(x)))τ ∗∗ =

t+ (f ′(t)).

Exercises

1. If p(x) is irreducible in F [x] and if v is a root of p(x), then prove

F (v) is isomorphic to F ′(w) where w is a root of p′(t); moreover, this
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isomorphism σ can so be chosen that

1. vσ = w.

2. ασ = α
′ for every α ∈ F.

2. If F is of characteristic 0 and if a, b, are algebraic over F , then prove

there exists an element c ∈ F (a, b) such that F (a, b) = F (c).

3. Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

4. Let F be the field of rational numbers. Determine the degrees of the

splitting fields of the polynomials over F.

(a) x4 + 1

(b)x6 + x3 + 1

Answers for check your progress

Section 2.1

1. (x− a)m/p(x)

2. Q(
√

3)

Section 2.2

1. No multiple roots

2. f ′(x) = 0
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Unit 3

The Elements of Galois Theory

Objectives:

• Recall the fixed field and subfield.

• To introduced finite extension and simple extension.

• Explain the Galois group and the fundamental theorem of Galios

theory.

3.1 Basics of Automorphism

Let R be any commutative ring with identity. A function σ : R → R is

an automorphism if σ is bijective and σ is ring homomorphism.

(1) For any commutative ring R with identity, define I : R → R by

I(x) = x, clearly, I is bijective, and I(xy) = I(x)I(y) = xy, I(x +

y) = I(x) + I(y) for all x, y ∈ G. Therefore, I is automorphism of R.

(2) Aut(R) = {σ : σ is an automorphism ofR}. Clearly, I ∈ Aut(R) 6=

∅.
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(3) Aut(R) is a group under composition.

Example 3.1.1. Consider the integral domain R = (Z,+, ·).

For any, σ ∈ Aut(R) σ(0) = 0.

For any m ∈ Z+, σ(m) = σ(1 + 1 + · · ·+ 1) = σ(1) + σ(1) + · · ·+ σ(1).

So σ(m) = mσ(1).

For any m ∈ Z−, m = −1− 1 · · · − 1 and so σ(m) = σ(−1) + σ(−1) +

· · ·+ σ(−1). = −mσ(−1) = mσ(1). Therefore, σ(m) = mσ(1) = mσ(1).

Hence, σ(m) = mσ(1) for all m 6= 0 in Z.

Since R is integral domain, σ(1) = 1 and hence σ(m) = mσ(1) = m

for all m ∈ Z and so Aut(Z) = {I}.

3.2 Galios Group

Theorem 3.2.1. Let [K : F ] be a field extension and g(x) ∈ F [x]. If σ is

an automorphism of K leaving every element of F fixed, then σ is must

take a root of g(x) lying in E into a root of g(x) in E.

Proof. Let g(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x].

Given, α ∈ K, is a root of g(x), σ(ai) = ai for all i.

Now, g(α) = a0 + a1α + · · ·+ anα
n = 0.

g(σ(α)) = σ0+σ1a1+· · ·+σ(αn)an = σ(a0)+σ(a1)σ(α)+· · ·+σ(an)σ(αn)

= σ(a0) + σ(a1α) + σ(a2α
2) + · · ·+ σ(anαn)

= σ(a0 + a1α + · · ·+ anα
n) = σ(0) = 0. Hence σ(α) is a root of g(x). 2
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Example 3.2.2. Find Aut(C).

For any σ ∈ Aut(C), σ(a) = a for all a ∈ R and σ(a + ib) = σ(a) +

σ(i)σ(b). From this we get σ(a + ib) = a + σ(i). Since i is a root of

x2 + 1 ∈ Q[x](or) R[x] and so σ(i) = ±i. Hence Aut(C) = {I, sigma :

σ(a+ ib) = a− ib} ≡ Z2.

Remark 3.2.3. (i) A prime field is a field containing no proper subfields.

(ii) For any field K, Q or Zp is a prime subfield of K.

Proposition 3.2.4. Let K be a field and F be a prime subfield of K and

σ ∈ Aut(K). Then σ(a) = a for all a ∈ F .

Proof. If char(K) = 0, then Q is prime subfield of K. Therefore [K : Q]

is a field extension. For any p/q ∈ Q, σ(p/q) = p/q.

If char(K) = p, then Zp is subfield of K and so K|Zp is field extension.

For m ∈ Zp, σ(m) = σ(1)m = m. 2

In view of Proposition, we have the following.

Example 3.2.5. If R = (Q,+, ·) or (R,+, ·), then Aut(R) = {I}.

Definition 3.2.6. Let K be a field and H ≤ Aut(K). The fixed field of

H is FH = {α ∈ K : σ(α) = α ∀ σ ∈ H}.

Clearly FH is a subset of K.

Proposition 3.2.7. Let K be a field and H < Aut(K). Then FH is a

subfield of K.
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Proof. Clearly, FH ⊆ K. For anyσ ∈ H, σ(0) = 0, and σ(1) = 1 and so

0, 1 ∈ FH . Let a, b ∈ FH and b 6= 0, Then σ(a) = a, σ(b) = b,∀σ ∈ H. By

definition of FH , σ(a± b) = σ(a)± σ(b) = a± b and so a± b ∈ FH for all

σ ∈ H. Also σ(ab) = σ(a)σ(b) = ab for all σ ∈ H and so ab ∈ FH .

Clearly, b−1 ∈ K, σ(b−1) = σ(b)−1 = b−1. From this we get b−1 ∈ FH

and so FH is a subfield of K. 2

Theorem 3.2.8. Let F be a subfield of K and G(K : F ) = {σ ∈ Aut(K) :

σ(a) = a for all a ∈ F}. Then G(K : F ) is a subgroup of Aut(K).

Proof. Let I ∈ Aut(K) with I(a) = a ∀ a ∈ K. Then I(a) = a ∀ a ∈

F, =⇒ I ∈ G(K : F ). Hence G(K : F ) is non-empty. Let σ, τ ∈ G(K :

F ). Then σ(a) = a, τ(a) = a ∀ a ∈ F. Clearly, σ ◦ τ ∈ Aut(K). Also

(σ ◦ τ)(a) = σ(τ(a)) = σ(a) = a for all a ∈ F and so σ · τ ∈ G(K : F ) and

σ−1 ∈ Aut(K). Since, σ(a) = a∀a ∈ F, σ−1(σ(a)) = σ−1(a), ∀ a ∈ F. This

implies (σ−1 · σ)(a) = σ−1(a) ∀ a ∈ F. Hence a = I(a) = σ−1(a) ∀ a ∈ F

and so σ−1 ∈ G(K : F ). Hence G(K : F ) is a subgroup of Aut(K). 2

Theorem 3.2.9. Let K be a field. If H1, H2 ⊆ Aut(K) and H1 ⊆ H2,

then FH2 ⊆ FH1.

Proof. For any a ∈ FH1, we have σ(a) = a for all σ ∈ H2. Since

H1 ⊆ H2, we also have σ(a) = a for all σ ∈ H1. By definition, FH1, this

means a ∈ FH1.Therefore, FH2 ⊆ FH1. 2
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Theorem 3.2.10. If F1 and F2 are subfields of k and F1 ⊆ F2, then

Aut(k/F2) ⊆ Aut(k/F1).

Proof. Clearly, Aut(k/F2) ⊆ Aut(k). Let σ ∈ Aut(k/F2). Then, for

any a ∈ F2, we have σ(a) = a. Since F1 ⊆ F2, we also have a ∈ F1, and

therefore σ(a) = a for all a ∈ F1. This means σ ∈ Aut(k/F1). Hence

Aut(k/F2) ⊆ Aut(k/F1). 2

In view of Proposition 3.2.4 and Theorem 3.2.8, we have the following.

Corollary 3.2.11. Let K be a field and let F be a prime subfield of K.

Then Aut(K) = G(K : F ).

Theorem 3.2.12. Let [K : F ] be a finite extension. Then |G(K : F )| ≤

[K : F ]

Proof. Clearly G(K : F ) is a subgroup of Aut(K). Let n = |G(K : F )|

Suppose, |G(K : F )| > [K : F ]

Let {α1, α2, · · · , αm} be a basis for K over F and dimF = m < n,

Let G(K : F ) = {I, σ1, · · · , σm}. Consider the system of equations,

σ1(α1)x1 + σ2(α1)x2 + · · ·+ σn(α1)xn = 0,

σ1(α2)x1 + σ2(α2)x2 + · · ·+ σn(α2)xn = 0,
...

σ1(αm)x1 + σ2(αm)x2 + · · ·+ σn(αm)xn = 0.−−−−−−−−(1)

Clearly, the number of equation is less than the number of unknowns,

(1) has non-trivial solutions, say β1, β2, . . . , βm (not all zero).
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Let a1, a2, . . . , am be any arbitrary elements in F. Then σ(ai) = ai ∀ σ ∈

G(K : F ).

Since, β1, β2, . . . , βn are solutions of (1), (1) =⇒ σ1((α1)β1 + σ2(α1)β2 +

· · ·+ σn(α1)βn = 0, ...σ1(αm)β1 + σ2(αm)α2 + · · ·+ σn(αm)βn = 0.

From this we get , a1σ1((α1)β1 + a1σ2(α1)β2 + · · ·+ a1σn(α1)βn = 0, . . .

amσ1(αn)β1 + amσ2(αm)α2 + · · ·+ amσn(αm)βn = 0.

‘ Since G(K : F ) = {σ1, σ2, · · · , σn}, σi(aj) = aj ∀ i, j, from this, we get

σ1(a1)σ1(α1)β1 + · · ·+ σn(a1)σn(α1)βn = 0.
...

σ1(am)σ1(αm)β1 + · · ·+ σm(an)σn(αm)βn = 0.

=⇒ σ1(α1a1 + · · ·+amαm)β1 +σ2(α1a1 + · · ·+amαm)β2 + · · ·+σn(a1α1 +

· · ·+ amαm)βm = 0.

=⇒ ∑n
i=1 σ(a1α1 + · · ·+ σ(am)αmβi) = 0.

=⇒ ∑n
i=1 σi(y)βi = 0 ∀ y ∈ K = {b1β1 + · · ·+ bmβm : bi ∈ F.}

=⇒ β1σ1(y) + · · ·+ βnσn(y) = 0 ∀ y ∈ K.

Since {σ1, σ2, . . . , σn} is linearly independent over K, βi = 0 ∀ i, which is

a contradiction. Hence |G(K : F )| ≤ [K : F ]. 2

Definition 3.2.13. (Galois extension)

Let [K : F ] be a finite extension. Then [K : F ] is a Galois extension if

|G(K : F )| = [K : F ].

If [K : F ] is Galoios extension, then the Galois group of [K : F ] is

G(K : F ).

In general, Gal(K : F ) = G(K : F ) = Aut(K : F ).
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Example 3.2.14. (1) G(Q( 3
√

2) : Q) = Aut(Q( 3
√

2)/Q) = {I}. There-

fore [Q( 3
√

2) : Q] = 3 and so Q( 3
√

2)/Q is not a Galois extension.

(2) G(Q( 4
√

5) : Q) = Aut(Q( 4
√

5)/Q) ∼= Z2. Therefore, [Q( 4
√

5) : Q] = 4

and Q( 4
√

5)/Q is not a Galois extension.

Definition 3.2.15. (Galois group)

Let f(x) ∈ F [x] and K be the splitting field of f(x) over F . Then the

Galois group of f(x) is the group G(K : F ).

Example 3.2.16. Let K = Q(
√

2). Then {1,
√

2} is a basis for a vector

space K over Q and so K = {a+ b
√

2 : a, b ∈ Q}. For any σ ∈ Aut(K) =

Aut(K|Q), σ(a) = a for all a ∈ Q. For any y = a + b
√

2 ∈ K, σ(y) =

a+ bσ(
√

2). Since
√

2 is root of x2 − 2 over Q, σ(
√

2) is a root of x2 − 2

and so σ(
√

2) = ±
√

2 and hence Gal(K|Q) ∼= Z2.

Example 3.2.17. Let K = Q(
√

2,
√

3). Then {1,
√

2,
√

3,
√

6} is a basis

for a vector space K over Q and so K = {a+b
√

2+c
√

3+d
√

6 : a, b, c, d ∈

Q}. For any σ ∈ Aut(K) = Aut(K|Q), σ(a) = a for all a ∈ Q. For any

y = a+b
√

2+c
√

3+d
√

6 ∈ K, σ(y) = a+bσ(
√

2)+cσ(
√

3)+dσ(
√

2)σ(
√

3).

Since
√

2 is root of x2 − 2 over Q, σ(
√

2) is a root of x2 − 2 and so

σ(
√

2) = ±
√

2. Similar way, we get σ(
√

3) = ±
√

3. Hence Gal(K|Q) =

{I, σ1, σ2, σ3}, where σ1(
√

2) =
√

2, σ1(
√

3) = −
√

3, σ2(
√

2) = −
√

2,

σ2(
√

3) =
√

3, σ3(
√

2) = −
√

2, σ3(
√

3) = −
√

3.

Hence Gal(K|Q) ∼= Z2 × Z2.
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Example 3.2.18. (1) Let f(x) = x3+x+1 ∈ Z2[x]. Then f(0) = f(1) =

1 and so f(x) has no roots in Z2. Hence f(x) is irreducible over Z2

Let α be a root of f(x) in some extension in Z2. Then K = Z2(α)

and {1, α, α2} is a basis for K over Z2 and Z2(α) = {a0 +a1α+a2α
2 :

ai ∈ Z2} = {0, 1, α, α2, 1+α2, α+α2, α2+α+1} and [Z2(α) : Z2] = 3.

f(α) = 0⇒ α3 + α + 1 = 0⇒ α3 = −α− 1 = α + 1

α is a root of f(x) and α ∈ Z2(α)

f(α2) = (α2)3 + α2 + 1 = (α3)2 + α2 + 1 = 0

f(α + α2) = (α + α2)3 + α + α2 + 1 = 0

f(x) = (x− α)(x− α2)g(x), g(x) ∈ Z2(α)[x]

Therefore, Z2(α) is a splitting field of f(x) over Z2

σ(x) = a+ bσ(α) + cσ(α)2

Since α is a root of f(x), σ(α) is a root of f(x) and σ(α) = α, α2 or

α + α2 ⇒ Gal(Z2(α)/Z2) ∼= Z3

(2) Let f(x) = x4 + x2 + 1 ∈ Q[x]. Then ±ω,±ω2 are the roots of f(x).

where ω is root of x2 + x+ 1 and so Q(ω) is a splitting field of f(x)

over Q. Hence Q(ω)/Q is a Galois extension and [Q(ω) : Q] == 2 =

|Gal(Q(ω)/Q)|.

Clearly {1, ω} is a basis for Q(ω) over Q and Q(ω) = {a0 + a1ω :

ai ∈ Q} and σ(x) = a0 + a1σ(ω) for all σ. Clearly ω is a root of

x2 + x + 1 ∈ Q[x], σ(ω) is a root of x2 + x + 1 ∈ Q[x]. This implies

σ(ω) = ω or ω2 and hence Gal(Q(ω)/Q) = {I, σ : σ(ω) = ω2} ∼= Z2.
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Example 3.2.19. Let K = Q( 3
√

2) and F = Q, where ω3 = 1. Let

α = 3
√

2, ωα, ω2α /∈ Q are root of p(x) = x3− 2, p(x) is irreducible over Q

and so {1, α, α2} is basis for Q(
√

3) over Q. Thus Q( 3
√

2) = {a+bα+cα2 :

a, b, c ∈ Q}. For any σ ∈ Aut(Q( 3
√

2)|Q), σ(a) = a for all a ∈ Q. Also

σ(a+ bα + cα2) = a+ σ(α)b+ σ(α)2c and so σ(α) is root of p(x) and so

σ(α) = α. Hence σ(a + bα + cα2) = a + αb + α2c and so σ = I. From

this we get Aut(Q( 3
√

2)) = Aut(Q( 3
√

2)|Q) = {I} and so Q( 3
√

2, ω)|Q is

not Galois extension.

Example 3.2.20. Let K = Q( 3
√

2, ω) and F = Q, where ω3 = 1. Then

Q( 3
√

2, ω) is a splitting of x3 − 2 ∈ Q[x] and [K : Q] = |Aut(K|Q)| = 6.

Thus {1, α = 3
√

2, α2, ω, ωα, ωα2} is a basis for K over F and so K = {x =

a+bα+cα2 +dω+eωα+fωα2 : a, b, c, d, e, f ∈ Q}. For any σ ∈ Aut(K),

σ(x) = a+bσ(α)+cσ(α)2+dσ(ω)+eσ(ω)σ(α)+fσ(ω)σ(α)2. This implies

ω is root of x2 + x + 1 and 3
√

2 is root of x3 − 2 and so σ(ω) = ω or ω2

and σ(α) = α, ωα or ω2α. Hence Gal(K|Q) ∼= S3.

Example 3.2.21. Let K = Q(
√

3, i) and F = Q. Then Q(
√

3, i) is a

splitting of (x2 − 3)(x2 + 1) ∈ Q[x] and [K : Q] = |Aut(K|Q)| = 4. From

this, {1,
√

3, i, i
√

3} is a basis for K over F and K = {a + b
√

3 + ci +

di
√

3 : a, b, c, d ∈ Q}. For any σ ∈ Aut(K), σ(a + b
√

3 + ci + di
√

3) ==

a + σ(
√

3)b + cσ(i) + dσ(i)σ(
√

3). This implies σ(
√

3) is root of x2 − 3

and so σ(
√

3) = ±
√

3. Note that σ(i) is root of x2 + 1 and so σ(i) = ±i.

Hence Aut(Q(
√

5)|Q) = {I, σ1, σ2, σ3} ∼= Z2 × Z2, where σ1 :
√

3 →
√

3

and i→ −i, σ2 :
√

3→ −
√

3 and i→ i σ3 :
√

3→ −
√

3 and i→ −i
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Theorem 3.2.22. Let [K : F ] be a finite extension. Then [K : F ] is a

Galois extension if and only if K is the splitting field of seperable polyno-

mial over F.

Proof. Suppose K is the splitting field of some seperable polynomial

over F. Then |Aut[K : F ]| = [K : F ] and hence, [K : F ] is Galois

extension.

⇒ K/F is normal

Conversely, [K : F ] is Galois extension. then [K : F ] = |Gal[K : F ]| =

n <∞

Let Gal[K : F ] = {σ1, σ2, . . . , σn}

Claim 1: If p(x) is monic irreducible over F and α ∈ K is a root of f(x)

then all the roots of f(x) be in K and p(x) is seperable over F

Let S = {σ(α) : σ ∈ Gal[K : F ]}. Then S = {α1 = α, . . . , αk} where

αi 6= αj.

For any j = 1, . . . , n, σj(αi) = σj(σt(α)) = σj◦σt(α) = σ(α) = αm ∈ S.

This implies σ(S) = S ∀ σ ∈ Gal[K : F ]

Define g(x) = ∏k
i=1(x− αi) ∈ K[x]

Let g(x) = a0 + a1x+ . . .+ ak−1x
k−1 + xk ∈ K[x]

Thus, σ(g(x)) = ∏k
i=1(x− σ(αi)) = ∏k

j=1(x− αj) = g(x)

σ(a0)+σ(a1)x+ . . .+σ(ak−1)xk−1 +xk = a0 +a1x+ . . .+ak−1x
k−1 +xk

⇒ (σ(a0)−a0)+. . .+(σ(ak−1)−ak−1)xk−1 = 0 and σi(ai)−ai ∈ K. Since

{1, x, . . . , xk−1} is linearly independent in K[x] over K, σi(ai)−ai = 0 ∀ i

2
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Theorem 3.2.23 (Fundamental theorem of Galois theory). Let [K : F ]

be a Galois extension and G = Gal[K : F ].

Let A = {E : E is a subfield of K containing F}, B = {H : H ≤ G}.

Then there is a bijection A ↔ B given by the correspondence E →{the

elements of G fixing E} and {the fixed field of H}← H which are inverse

to each other.

Proof. Let H1, H2 ∈ B and H1 6= H2. Then FH1 6= FH2, where FHi

is the fixed field of Hi. Clearly, FHi
is a subfield of K containing F .

FH1, FH2 ∈ A and FH1 6= FH2. From this, B → A is 1-1. Let E ∈ A. Then

E is the subfield of K containing F . Since, [K : F ] is Galois extension,

K is the splitting field of some seperable polynomial f(x) over F . Since

F ⊆ E,F [x] ⊆ E[x] and f(x) ∈ E[x], we have K is the splitting field of

f(x) over E. Thus [K : E] is Galois extension and |Aut[K : E]| = [K : E].

Also E is the fixed field of Aut[K : E] ≤ G. Thus A→ B is onto. Hence

A↔ B is a bijection and |A| = |B| 2

Under this correspondence

(i) If E1, E2 corresponds to H1, H2 respectively, then E1 ⊆ E2 if and

only if H2 ⊆ H1.

Proof: Clearly Fi is the fixed field of Hi and so Hi = Aut[K : Ei].

Suppose E1 ⊆ E2. For any σ ∈ H2 = Aut[K : E];σ(a) = a,∀a ∈ E2.

⇒ σ(a) = a,∀a ∈ E1 ⊆ E2 and σ ∈ Aut[K : E1]. Thus H2 ⊂ H1.

Conversely, H2 ⊆ H1. For any σH1, by definition of E1, σ(a) = a,∀a ∈

H1. Since H2 ⊆ H1, we have σ ∈ H2.
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(ii) [K : E] = |H| and [E : F ] = [G : H].

Proof: Clearly, E is the fixed field of H and H = Aut[K : E] and

|H| = |Aut(K|E)| = [K : E](∵ [K : E] is a Galois extension ). Since

[K : F ] is a Galois extension, [K : F ] <∞. Thus [K : E] and [K : E] are

finite extensions. Clearly, [K : F ] = [K : E][E : F ].

⇒ [K : F ] = |H| [E : F ]

⇒ [E : F ] = [K:F ]
[K:E] = |G|

|H| = [G : H].

(iii) Let E ⊆ A. Then [K : F ] is Galois extension and Gal[K : E] =

Aut[K : E] ≤ G.

Proof: Since [K : F ] is Galois extension and K is the splitting field of

seperable polynomial f(x) over F , Gal[K : E] = Aut[K : E] ≤ G.

Theorem 3.2.24. Let Fi be the fixed field of Hi ≤ G and σ ∈ G. F1 and

F2 are conjugates under σ if and only if σH1σ
−1 = H2.

Proof. (σ−1 ◦ τ ◦ σ)(x) = x, ∀τ ∈ H2 ⇒ σ−1 ◦ τ ◦ σ ∈ H1,∀τ ∈ H2 ⇒

σ−1H2σ ∈ H1 ⇒ H2 ⊆ σH1σ
−1, H2 = σH1σ

−1.

Conversely, suppose σH1σ
−1 = H2. For any y ∈ F2, σ ◦ τ ◦ σ−1 ∈

H2,∀τ ∈ H1. (σ◦τ ◦σ−1)(y) = y,∀τ ∈ H1. (τ ◦σ−1)(y) = σ−1(y),∀τ ∈ H1

which implies σ−1(y) = x, for some x ∈ F1, y = σ(x) ∈ σ(F1) and so

F2 ⊆ σ(F1). For any x ∈ F1, σ−1 ◦ τ ◦σ ∈ H1,∀τ ∈ H2. (σ−1 ◦ τ ◦σ)(x) =

x, ∀τ ∈ H2. (τ ◦ σ)(x) = σ(x),∀τ ∈ H2 which implies σ(x) ∈ F2 for all

x ∈ F1 and so σ(F1) ⊆ F2. 2

(iv) [E : F ] is Galois extension if and only if H �G.
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Proof: Suppose [E : F ] is Galois extension. Then by definition of Ga-

lois extension, [E : F ] = |Aut(E|F )| <∞ and [E : F ] is finite extension.

Also E is the splitting field of some seperable polynomial f(x) over F and

hence E = F (α1, α2, · · · , αm), where αi is root of f(x) over F . For any

σ ∈ Gal[K : F ], σ(αi) is a root of f(x) over F, ∀i.

{σ(α1), σ(α2), · · · , σ(αm)} = {α1, α2, · · · , αm}.

σ(E) = F (σ(α1), σ(α2), · · · , σ(αm)) = F (α1, α2, · · · , αm) = E.

⇒ E is conjugate to itself under σ, σ ∈ Gal[K : F ]. By Theorem 3.2.24,

σHσ−1 = H,∀σ ∈ Gal[K : F ]. Thus H �G = Gal[K : F ].

Conversely, H � G = Gal[K : F ]. Then σHσ−1 = H,∀σ ∈ G and

by Theorem 3.2.24, σ(E) = E,∀σ ∈ G. [E : F ] < ∞ and so [E : F ] is

algebraic. Clearly, E = F (β1, β2, · · · , βn), where β′is are algebraic over F .

By (i) and (ii), E is splitting field of some seperable polynomial over F

and [E : F ] is Galois extension. Clearly, [E : F ] = |G|
|H| = |Aut[E : F ]| and

G
H is a group.

Define Φ : G → Aut[E : F ] by Φ(σ) = σ1E, where σ1 ∈ Gal[E :

F ], σ1E(a) = σ(a),∀a ∈ E. Let σ, τ ∈ G. Then σ.τ ∈ G and (σ.τ)1E(a) =

(τ.σ)a = σ(τ(a)) = σ1E(τ(a)) = σ1E(τ1E(a)) = (σ1E.τ1E)(a),∀a ∈ E.

(σ.τ)1E = σ1E.τ1E. Thus Φ(σ.τ) = (σ.τ)1E = σ1E.τ1E = Φ(σ).Φ(τ). Sup-

pose σ ∈ KerΦ. Then Φ(σ) = IE. σ1E = IE ⇔ σ1E(a) = IE(a) = a,∀a ∈

E ⇔ σ(a) = a,∀a ∈ E ⇔ σ ∈ H ⇒ KerΦ = H. By first isomorphism

theorem, (GH ) ∼= Φ(G) ≤ Gal[K : F ] and so |G|
|H| = [E : F ] = |Φ(G)| ≤

|Gal[E : F ]| = [E : F ].

⇒ |Gal[E : F ]| = [E : F ] =
∣∣∣G
H

∣∣∣.
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⇒ Gal[E : F ] = G
H .

(v) Let Ei be the fixed field of Hi, i = 1, 2. Then E1 ∩ E2 is the fixed

field of H =< H1, H2 >.

Proof: Let FH be the fixed field of H. For any α ∈ FH , σ(α) = α, ∀σ ∈

H. Since H =< H1, H2 >,H1, H2 ⊆ H, we have σ(α) = α, ∀σ ∈ H1 and

τ(α) = α, ∀τ ∈ H2.

⇒ α ∈ E1, α ∈ E2 ⇒ α ∈ E1 ∩E2. Thus FH ⊆ E1 ∩E2. Let β ∈ E1 ∩E2.

Then β ∈ E1, β ∈ E2. Since Ei is the fixed field of Hi, σ(β) = β, ∀σ ∈

H1, τ(β) = β, ∀τ ∈ H2. Since H =< H1, H2 >, for any δ = σ ◦ τ , where

σ ∈ H1, τ ∈ H2. δ(β) = (σ ◦ τ)(β) = σ(τ(β)) = σ(β). Thus β ∈ FH and

E1 ∩ E2 ⊆ FH . Hence E1 ∩ E2 = FH is a fixed field of H.

3.2.1 Symmetric function

Definition 3.2.25. Let x1, x2, . . . , xn be indeterminates. A polynomial

f(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] is a symmetric function if for any

σ ∈ Sn, f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, x2, . . . , xn).

For any σ ∈ Sn, σ(i) = i,

f(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn.

Then, f(xσ(1), xσ(2), . . . , xσ(n)) = x1 + x2 + · · ·+ xn.

when n = 3, σ = {1, 2, 3},

f(x1, x2, x3) = x1+x2+x3. σ = {1, 3, 2} ⇒ f(x1, x3, x2) = x1+x3+x2 =

f(x1, x2, x3), σ = {2, 1, 3} ⇒ f(x2, x1, x3) = x2 + x1 + x3 = f(x1, x2, x3),
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σ = {3, 2, 1} ⇒ f(x3, x2, x1) = x3 + x2 + x1 = f(x1, x2, x3). Therefore,

f(x1, x2, x3) = x1 + x2 + x3 is a symmetric function.

Definition 3.2.26. Let F be a field and let x1, x2, ..., xn be distinct n

indterminants xi 6= xj. Let F [x1, x2, . . . , xn] be an integral domain. Then,

F (x1, x2, . . . , xn) is the field of fractions of F [x1, x2, . . . , xn].

F (x1, x2, . . . , xn) = {f(x1,x2,...,xn)
g(x1,x2,...,xn) : f, g ∈ F (x1, x2, . . . , xn)}.

f(x1, x2, . . . , xn) ∈ F (x1, x2, . . . , xn) is a symmetric rational function if

for any permutation σ ∈ Sn, f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, x2, . . . , xn).

When n = 2, f(x1, x2) = x1 +x2, x1x2, x2
1 +x2

2, xm1 +xm2 are symmetric

functions.

Definition 3.2.27. Elementary Symmetric function s1 =
n∑
i=1

xi = x1 +

x2 + · · ·+ xn,

s2 = ∑
i 6=j
xixj

s3 = ∑
i 6=j 6=k

xixjxk

...

sn = x1x2 · · ·xn

Let S = {f(x1, x2, . . . , xn) ∈ F (s1, s2, . . . , sn) : f is a symmetric} be

the subfield of F (x1, x2, . . . , xn), and F (s1, s2, . . . , sn) is the subfield of S

containing F . Then, F (x1, x2, . . . , xn)|S, F (x1, x2, . . . , xn)|F (s1, s2, . . . , sn)

=⇒ S|F (s1, s2, . . . , sn) are a field extension.

Problem 3.2.28. Find G(F (x1, x2, . . . , xn) : S) (or) AutF (x1, x2, . . . , xn)|S.
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Proof. For any σ ∈ Sn, define:τσ(F (x1, x2, . . . , xn))→ (F (x1, x2, . . . , xn))

by τσ(f(x1, x2, . . . , xn)) = (xσ(1), xσ(2), . . . , xσ(n)).

Claim: τσ ∈ Aut(F (x1, x2, . . . , xn))|S.

Let f(x1, x2, . . . , xn), g(x1, x2, . . . , xn) ∈ F (x1, x2, . . . , xn) Then,

τσ(f(x1, x2, . . . , xn) + g(x1, x2, . . . , xn)) = τσ(h(x1, x2, . . . , xn))

= h(xσ(1), xσ(2), . . . , xσ(n)) = f(xσ(1), xσ(2), . . . , xσ(n))+g(xσ(1), xσ(2), . . . , xσ(n))

= τσ(f) + τσ(g).

Now τσ(f(x1, x2, . . . , xn)g(x1, x2, . . . , xn)) = τσ(k(x1, x2, . . . , xn))

= k(xσ(1), xσ(2), . . . , xσ(n)) = f(xσ(1), xσ(2), . . . , xσ(n))g(xσ(1), xσ(2), . . . , xσ(n))

= τσ(f)τσ(g) τσ is a ring homomorphism. Clearly, τσ(1) = 1 6= 0, τσ 6= 0.

τσ is one-one. For any h(xσ−1(1), . . . , xσ−1(n)) ∈ F (x1, x2, . . . , xn),

τσ(h(xσ−1(1), . . . , xσ−1(n))) = h(xσ(σ−1(1)), . . . , xσ(σ−1(n))) = h(x1, x2, . . . , xn)

Hence, τσ ∈ Aut(F (x1, x2, . . . , xn)) and so |Aut(F (x1, x2, . . . , xn))| ≥ n!.

Define Φ̂ : Sn → Aut(F (x1, x2, . . . , xn)) by Φ(σ) = Tσ. Let σ, τ ∈ Sn.

Then στ ∈ Sn.

Tστ(f(x1, x2, . . . , xn)) = f(xστ(1), xστ(2), . . . , xστ(n))

= f(xτ(σ(1)), xτ(σ(2)), . . . , xτ(σ(n))) = Tτ(f(xσ(1), xσ(2), . . . , xσ(n)))

= Tτ(Tσ(f(x1, x2, . . . , xn)))

= (TσTτ)(f(x1, x2, . . . , xn)).

Therefore, Φ(στ) = Tστ = TσTτ = Φ(σ)Φ(τ). Hence, Φ is a group

homomorphism.

Suppose σ ∈ ker Φ. Then by definition, Tσ = Φ(σ) = I.Let I be

the identity automorphism of F (x1, x2, . . . , xn). Then, σ(i) 6= i implies

σ(i∗) = j∗ for some j ∈ {1, 2, . . . , n}. Hence, σ 6= I and so ker Φ = {1}.
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By First Isomorphism Theorem, Sn ∼= Φ(Sn) ⊆ Aut(F (x1, x2, . . . , xn)).

Clearly, |Φ(Sn)| = |Sn| = n!. Let FH be the fixed field ofH ⊆ Aut(F (x1, x2, . . . , xn)).

Then, FH ⊆ F (x1, x2, . . . , xn).

Let f(x1, x2, . . . , xn) ∈ FH . Then, Tσ(f(x1, x2, . . . , xn)) = f(x1, x2, . . . , xn)

for all σ ∈ Sn. This implies f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, x2, . . . , xn) for

all σ ∈ Sn. Hence, f(x1, x2, . . . , xn) is a symmetric rational function.

Let S = {τσ : σ ∈ Sn} ⊆ Aut(F (x1, x2, . . . , xn)). Then, |S| = |Sn| =

n!.

Let f(x) = xn + s1x
n−1 + s2x

n−2 + · · ·+ (−1)nsn ∈ F [s1, s2, . . . , sn][x].

Then, f(x) ∈ F (x1, x2, . . . , xn). Hence, |Aut(F (x1, x2, . . . , xn))| ≥ n!.

Therefore, |Aut(F (x1, x2, . . . , xn))| = n!. 2

Let us sum up:

• Automorphisms and Fixed field.

• Elementary symmetric functions.

• Normal extension.

• Galois group.

• Fundamental theorem of Galois theory.

Check your progress

1. What is [F (x1, x2, ..., xn : S)] = ?
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2. Let K is the field of complex numbers and F is field of real numbers,

then the order of G(K,F ) is —

3. What is G(F (x1, x2, ...., xn), S) = ?

Unit Summary:

In this unit, we discussed the concept of fixed field, subfield, finite exten-

sion and simple extension. Further, we introduced the Galois group and

the fundamental theorem of Galios theory.

Glossary:

• G(K,F )− is the set all group of automorphisms.

• o(G(K,F )) ≤ [K : F ]

• Symmetric rational functions

• Norma extension

• Galois group

• KH = {x ∈ G(K,F )|σ(x) = x for everyσ ∈ H}

Self Assessment questions

1. If K is a finite extension of F , then G(K,F ) is a finite group and its

order, o(G(K,F )) satisfies o(G(K,F )) ≤ [K : F ].

2. Show that the fixed field of G is a subfield of K.
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3. K is the normal extention of F iff K is the splitting field of some

polynomial over F.

4. G(K,F) is a subgroup of the group of all automorphisms of K.

Exercises

1. Prove that a symmetric polynomial in x1, , , xn is a polynomial in the

elementary symmetric functions in x1, , , xn.

2. If p(x) = xn− 1 prove that the Galois group of p(x) over the field of

rational numbers is abelian.

3. Using the Eisenstein criterian, prove that x4 + x3 + x3 + x + 1 is

irreducible over the field of rational numbers.

4. Express the following polynomials in the elementary symmetric func-

tions in x1, x2, x3 :

(a) x2
1 + x2

2 + x2
3

(b) x3
1 + x3

2 + x3
3

Answers for check your progress

1. n!

2. 2

3. Sn
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Unit 4

Finite Fields

Objectives:

• Recall the finite field and splitting field.

• To prove the Wedderburns theorem on finite division rings.

4.1 Finite Field

Definition 4.1.1. The nature of fields having only a finite number of

elements such fields are called fields.

Lemma 4.1.2. Let F be a finite field with q elements and suppose that

F ∈ K, where K is also a finite field. Then K has qn elements where

n = [K : F ].

Proof. Since K is a vector space over F and since k is finite, then K is

a finite-dimensional vector space over F .

Suppose that [K : F ] = n.
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Then K has a basis of n elements over F .

Let v1, v2, . . . , vn be the basis elements, then every element of K has

unique representation in the form α1v1+α2v2+· · ·+αnvn, where α1, α2, . . . , αn

are in F .

The number of elements in K is the number of α1v1 +α2v2 + · · ·+αnvn

as the α′s range over F . Since each coefficients can have q values, K must

have qn elements. 2

Corollary 4.1.3. Let F be a finite field, then F has pm elements (where

p is a prime number), then P is the characteristic of F .

Corollary 4.1.4. If the finite field F has pm elements, then every a ∈ F

satisfies apm = a.

Proof. If a = 0, the result is trivially true.

If the non-zero elements of F form a group under multiplication of order

pm − 1.

By corollary 2. ”If G is a finite group and a ∈ G, then ao(G) = e”, we

have
ap

m−1 = 1

⇒ap
m

a
= 1

⇒apm = a

2

Lemma 4.1.5. If the finite field F has Pm elements, then the polynomial

xP
m − x in F [x] factors in F [x] as xPm − x = ∏

λ∈F (x− λ).
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Proof. By lemma, ”A polynomial of degree n over a field can have at

most n roots in any extension field.”

The polynomial xpm − x has at most pm roots in F .

However, by corollary, we know that pm roots are all the elements of

F.

Then by corollary, ”If a ∈ K is a root of p(x) ∈ F [x], where FCK,

then in K[x], (x− a) | p(x)”, we have

xP
m − x =

∏
λ∈F

(x− λ).

2

Corollary 4.1.6. If the field F has pm elements, then F is the splitting

field of the polynomial xPm−x.

Proof. By lemma, xpm − x splits in F .

However, it cannot split in any smaller field to have all the roots of

this polynomial and to have at least pm elements.

Thus, F is the splitting field of xpm − x. 2

Lemma 4.1.7. Any two finite fields having the same number of elements

are isomorphic.

Proof. If these fields have pm elements, by the above corollary, they are

(K1, K2) both splitting fields of the polynomial xpm − x over Jp (the ring

of integers modulo any prime p )
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If p is a prime, then Jp is field.

Therefore, they are isomorphic. 2

Lemma 4.1.8. For every prime number P and every positive integer m

there exists a field having pm elements.

Proof. Consider the polynomial xpm−x in Jp[x], the ring of polynomials

in x over Jp, the field of integers mod P .

Let K be the splitting field of this polynomial.

In K, let F =
{
a ∈ k : apm = a

}
. The elements of F are the roots of

xp
m − x.

By corollary -2 are distinct.

whence F has pm elements.

Now claim that F is a field. If a, b ∈ F , then, apm = a, bp
m = b, and so

(ab)pm = ap
m

bp
m = ab.

⇒ (ab)pm = ab, a, b ∈ F.

Also, since the characteristic is p.

(a± b)pm = ap
m ± bpm

⇒ (a± b)pm = a± b, a± b ∈ F.

consequently F is a subfield of K and is a field having pm elements. 2

Theorem 4.1.9. For every prime number p and every positive integer m

there is a unique field having pm elements.
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Theorem 4.1.10. Let G be a finite abelian group with the property that

the relation xn = e is satisfied by atmost n elements of G, for every integer

n.

Proof. If the order of G is a power of some prime number q, then the

result is very easy.

Suppose that a ∈ G is an element whose order is as large as possible.

Let the order of ’ a ’ be qr for some integer r.

The element e, a, a2, . . . .aq
r−1 gives us qr distinct solutions of the equa-

tion xq
r = e.

By our hypothesis, there are all the solution of this equation. If b ∈ G its

order is qs where s ≤ r.

Then

bq
r =

(
bq

s)qr−s = eq
r−s = e

. By the observation made, we have b = ai for some i.

Therefore, G is cyclic. 2

Definition 4.1.11. Let F be a commutative ring with 1. F is a field

if (F ∗, .) is an abelian group. (or) Every non-zero element in F has

multiplicative inverse.

F is finite field if |F | <∞.

Proposition 4.1.12. Let F be a finite field of order pn. Then (F×, ·) is

cyclic.

Proof. Let |F | = pn. Then (F×,+, ·) is an abelian group and |F×| =

pn − 1.
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Let α be a maximum order element in F× and let m = ord(α). Then

|β|/|α| for all β ∈ F×. For β ∈ F×, βm = βt|β| = (β|β|)t = 1. β is a root of

xm − 1, where forallβ ∈ F×. Since αm = 1, 1, α, α2, . . . , αm are distinct

elements inF×. |F×| ≥ m | |F×| = m > α. Therefore, F× is a cyclic group

generated by α, and α is a primitive element in F . 2

Remark 4.1.13. Let F be a finite field.

(1) (F*, .) is a finite abelian group.

(2) |a| <∞, for all a ∈ F ∗.

(3) Clearly, |1|(F,+) <∞ and char(F )= |1|(F,+) <∞, Since char(F ) = 0

or p.

(4) {0} and {F} are only ideals in F.

(5) ZP is a prime subfield of F.

(6) F/ZP is field extension and F is a vector space over Zp.

(7) From this, F has basis and so dimZp(F ) = n = [F : Zp] since |F | <

∞.

(8) Aut(FPn/Zp) = Zn, σ : Fpn =⇒ Fpn by σ(a) = ap.

(9) [Fpn : Zp] = n = |Aut(Fpn/Zp)| and so FPn/Zp is Galois extension.

(10) Fpn/Zp is simple extension.

(11) (F ∗, .) =< α > for some α ∈ F.
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(12) F is perfect and Fpn is a spliting field of separable polynomial xPn−x

over Zp.

Theorem 4.1.14. Let F be a finite field with q elements F ⊂ K, where

K is finite field. Then |K| = qm for some m.

Proof. Since, F ⊂ K, [K : F ] is field extension, and so K is a vector

space over F. Since, |K| < ∞, dimF (K) = m < ∞, Let {α1, α2, · · ·αn}

be a basis for K over F. Then K = {a1α1 + a2α2 + · · · amαm : αi ∈ F}

and so |K| = q · · · q = qm. 2

Theorem 4.1.15. For every prime p, and every positive integer m, there

exists a unique finite field with pm elements.

Proof. Let f(x) = xp
n − x ∈ Zp[x]. Then, there exists a spliting field K

of f(x) over ZP . Let K = Zp (all roots of f(x) ) and char(K) = p. Clearly,

f ′(x) = pmxp
m−1−1. If α ∈ K, is a root of f(x), then f ′(α) = pmαp

m−1−1.

Therefore f(x) is separable over Zp. Let S = { all roots of f(x)}. Then

|S| = pm, and S ⊆ K. Let a, b 6= 0 ∈ S, then ap
m − a = 0 implies that

ap
m = a, bp

m = b. (a ± b)Pm = ap
m ± bpm = a ± b. =⇒ a ± b are roots of

f(x), a± b ∈ S. Now, (ab)pm = ap
m

bp
m = ab =⇒ (ab)pm = −ab = 0. ab is

a root of f(x) over Zp and ab ∈ S. Clearly, (b−1)pm = (bpm)−1 =⇒ b−1 is a

root of xpm−x. =⇒ b−1 ∈ S. Since (S,+, .) is a field, and σ : Fpm → Fpm

by σ(a) = ap. S is a subfield of K. Since, K is the splitting field of

f(x), K ⊆ S. and so Fpn|Zp is Galois extension. =⇒ K = S and

|K| = pm. =⇒ K = Fpm. 2
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Corollary 4.1.16. Fpm is a spliting field of xPn − x over Zp.

Corollary 4.1.17. If F1, F2 are finite fields with |F1| = |F2| = P n, then

F1 ≡ F2.

Proof. F1 is a spliting field of xpm − x over Zp. F2 is a spliting field of

xP
m − x over Zp. Therefore, {F1 ≡ F2}. 2

Proposition 4.1.18. Let m,n ∈ Z+, then m|n =⇒ xm − 1|xn − 1.

Proof. By definition, n = mk + r, where 0 ≤ r < m. Now, xr(1 + xm +

x2m + · · ·+ x(k−1)m)(xm − 1) + (xr − 1).

= xr(xm + x2m + · · ·+ xkm − 1− xm − x2m · · · x(k−1)m + xr − 1.

= −xr + xkm+r + (xr − 1) = xn − 1.

xr(
k−1∑
i=0

xim)(xm − 1)(xr − 1) = (xn − 1).

Suppose, xm− 1|xn− 1 if and only if xr− 1 = 0 if and only if n = mk+ 0

if and only if m|n. 2

Proposition 4.1.19. If m|n, then xp
m − x|xpn − x.

Proof. Since, m/n, n = λm, for some λ and m ≤ n, =⇒ pm − 1|pn − 1

=⇒ xp
m−1 − 1|xpn−1 − 1

=⇒ xp
m − x|xpn − x.

Therefore, [Fp : Zp] = n. 2

Theorem 4.1.20. Fpm is a subfield of Fpn iff m|n.
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Proof. Suppose, Fpm is a subfield of Fpn. Then Fpn/Fpm is a field exten-

sion, and Fpn is a vector space over Fpm. Since, |Fpn| <∞, [Fpn : Fpm] <∞,

Since char (Fpm) = p, Zp is a prime subfield of Fpm, and [Fpn : Zp] = m <

∞.

Clearly, [Fpn : Zp] = [Fpn : Fpm][Fpm : Zp]

n = [Fpn : Fpm].m Clearly, [Fpn : Fpm] = n/m.

Conversely, m|n, Consider, f(x) = xp
m−x, g(x) = xp

n−x ∈ Zp[x]. Then,

Fpm is spliting field of f(x) over Zp. and Fpn is spliting field of g(x) over

Zp. Clearly, Fpn = Zp (all roots of g(x)) and Fpm = zp (all roots of f(x).)

Since m|n, xpm − x/xpn − x over Zp.

xp
n−x = xp

m−xλ(x), λ(x) ∈ Zp[x]. For any α ∈ Fpm, α is a root of xpm−x

over Zp and so α ∈ Fpn. So Fpm ⊆ Fpn. Since Fpm is field, Fpm is a subfield

of Fpn. 2

Remark 4.1.21. Consider Fpm. The number of subfields of Fpn is τ(n).

Theorem 4.1.22. Let p(x) be any irreducible polynomial of degree d over

Zp. Then p(x)|xpn − x over Zp for some n. and hence p(x) is separable.

Proof. Let p(x) be any irreducible polynomial over Zp. and deg(p(x)) =

d. Then there exists an extension k of Zp such that K has a root α of

p(x) and [K : Zp] = deg(p(x))d. Clearly, {1, α, α2, · · ·αd−1} is a basis for

K over Zp. K = Zp(α) = {a0 + 1.a1α + · · · + ad−1α
d−1 : αi ∈ ZP}. and

|K| = pd, and K = Fpdis a spliting field of xP d−x over Zp. Therefore,

α ∈ K is a root of xP d−x over Zp. Clearly, Z(α)
α,Zp = P (x) and P (x)/xpd−x
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over Zp. Since, xpd−x is separable over Zp and p(x) is separable over Zp.

2

Proposition 4.1.23. Given any positive integer n, there exists an irre-

ducible polynomial of degree n over a finite field F.

Proof. Consider, Fpm, then Fpm is a subfield of Fpmn. That implies Fpmn/Fpm

is field extension.

[FPmn : Fpm] = mn/m = n. Since Fpmn = Fpm(α).

[FPmn : Fpm] = [Fpm(α) : FPm] <∞. α is algebraic over Fpm.

[Fpm(α) : FPm] = deg(mα,Fpm(α)) = n. 2

Let us sum up:

• Finite field.

• Cyclic group.

• Division ring.

Check your progress

1. If the finite field F has pm elements then every a ∈ F satisfy —

2. Any two finite fields having the same number of elements are —

4.2 Wedderburn Theorem

Theorem 4.2.1 (Wedderburn theorem). Every finite divisional ring is a

field.
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Proof. Let D be any finite divisional ring. Let F = Z(D) = {x ∈

D : xy = yx, for all y ∈ D}. Then F is a field and F ⊆ D. Clearly

D is a vector space over F and dimF (D) = n < ∞. Since |D| < ∞,

|F | = q <∞.

Clearly {α1, α2, . . . , αn} is a basis for D over F and so

D = {a1α1 + a2α2 + · · ·+ anαn : ai ∈ F}

and |D| = qn. Let G = (D∗, .) be a group. Then Z(G) = {x ∈ D∗ : xy =

yx, for all y ∈ D∗} = F ∗. Clearly |G| = qn − 1 and |F ∗| = q − 1. By

Class equation,

|G| = |Z(G)|+
∑

a/∈Z(G)
[G : NG(a)] −→ (1)

.

For any a ∈ Z(G), clG(a) = {gag−1 : g ∈ G} = {a}. For any a /∈

Z(G), NG(a) < G.

|clG(a)| = [G : NG(a)] = |G|
|NG(a)|

. In D,CD(a) = {x ∈ D : xa = ax}, NG(a) = {x ∈ D : xa = ax}

and CD(a)∗ = NG(a). Clearly, (CD(a),+) ≤ (D,+) and by Lagrange’s

theorem, |CD(a)| divides |D| = qn. Thus |CD(a)| = qn(a), for some n(a) ∈

Z+. Since NG(a) = CD(a)∗, |NG(a)| = qn(a)−1. Since NG(a) is a subgroup

of G, |NG(a)| divides |G| , qn(a) − 1 | qn − 1 if and only if n(a) | n and

n(a) 6= n.
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Equation (1), |G| = q − 1 + ∑
n(a)|n,n(a)6=n

qn−1
qn(a)−1 .

Let xn − 1 = ∏
d|n

Φd(x) ∈ Z[x]. For d|n, d 6= n, xd − 1 = ∏
m|d,m6=n

Φm(x).

xd − 1|xn − 1 ⇒ xn − 1 = (xd − 1)g(x), where g(x) ∈ Z[x] = (xd −

1)Φn(x)h(x), where h(x) ∈ Z[x]. From this we get, xn−1
xd−1 = Φn(x)h(x).

Now Φn(x) | xn−1
xd−1 , for all d|n& d 6= n.

⇒ Φn(x) | ∑
d|n& d6=n

xn−1
xd−1 . Since Φn(x) ∈ Z[x],Φn(q) ∈ Z

⇒ Φn(q) |
∑

n(a)|n,n(a 6=n)
qn−1
qn(a)−1 . Since, xn − 1 = Φn(x) ∏

d|n,d6=n
Φd(x).

qn − 1 = Φn(q)
∏

d|n,d 6=n
Φd(q).

⇒ Φn(q)|qn − 1.

Φn(q)|(|G| −
∑

n(a)|n,n(a)6=n
qn−1
qn(a)−1) and so Φn(q)|q − 1.

Claim: n = 1.

If n > 1, then Φn(x) = ∏
α∈µn,|α|=n

(x−α). Φn(q) = ∏
α∈µn,|α|=n

(q−α) ∈ Z.

For α ∈ µn and |α| = n, |q − α| > q− 1. |Φn(x)| > q− 1 which implies

Φn(q) - q − 1, which is a contradiction. Hence n = 1 and F = D. 2

Let us sum up:

• Wedderburn theorem.

• Commutative field.

• Finite division ring.

• Jacobson theorem.

Check your progress

1. A finite division ring is necessarily —
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2. Any finite subring of a division ring is —

Unit Summary:

In this unit, we discussed the concept of finite extension and splitting

field. Further, we proved the WedderburnâĂŹs theorem on finite division

rings.

Glossary:

• If F has pm elements then every a ∈ F satisfies apm = a.

• xpm − x = ∏
λ∈F (x− λ)

• The Wedderburn’s theorem.

• Cyclotomic polynomials (Examples: Φ1(x) = x − 1, Φ2(x) = x + 1

and Φ3(x) = x1 + x+ 1.)

Self Assessment questions

1. The multipicative group of non-zero elements of a finite field is cyclic.

2. Prove that for every prime number p and every positive integer m

there exists a field having pm elements.

3. Show that a finite division ring is necessarily a commutative field.

4. If R is a finite ring in which xn = x, for all x ∈ R where n > 1 prove

that R is commutative.
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Exercises

1. LetG be a finite abelian group enjoying the property that the relation

xn = e is satisfied by at most n elements of G, for every integer n.

Then G is a cyclic group.

2. If the field F has pn elements prove that the automorphisms of F

form a cyclic group of order n.

3. If θ 6= 1 is a root of unity and if q is a positive integer, prove that

|q − θ| > q − 1

4. Let D be a division ring and K a subdivision ring of D such that

xKx−1 ⊂ K for every x 6= 0 in D. Prove that either K ⊂ Z, the

center of D or K = D.

Answer for check your progress

Section 4.1

1. apm = a

2. Isomorphic

Section 4.2

1. Commutative field

2. Division ring
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Unit 5

Solvability of Radicals

Objectives:

• Recall the splitting field of polynomial over F .

• To know the solvable by radicals over F .

• To prove the Frobenius theorem and Four-square theorem.

5.1 Frobenious Theorem

Definition 5.1.1. A division ring D is said to be algebraic over a field F

if

1. F ⊆ Z(D)

2. For any α ∈ D, f(α) = 0 for some f(x) ∈ F [x]

Remark 5.1.2. If D is algebraic over F , then F is subdivision ring of D

and so D is a vector space over F and D has a non-zero basis.
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Theorem 5.1.3. Let D be the division ring. If D is algebraic over C,

then D = C.

Proof. By definition, C is the subdivision ring of D and so C ⊆ D. For

any α ∈ D, α is a root of some f(x) ∈ F [x] and deg(f(x)) = n.

By Fundamental Theorem of Algebra,

f(x) = (x− λ1)(x− λ2) · · · (x− λn)

where λi ∈ C. Clearly f(α) = (α − λ1)(α − λ2) · · · (α − λn) = 0. (α −

λ1)(α− λ2) . . . (α− λn) = 0 in D ........(1).

Since α, λi ∈ D, α − λi ∈ D ∀i. Since D has no zero divisor,
n∏
i=1

(α −

λi) = 0 ⇒ α − λi = 0 for some i. From this, we get α = λi ∈ D;

ab = 0⇒ a = 0 or b = 0. Therefore D ⊆ C and hence D = C. 2

Theorem 5.1.4. (Frobenious Theorem) Let D be the division ring. If D

is algebraic over R, then D = R,C or real quaterinion ring.

Proof. By definition R is a subdivision ring of D. If D = R, then

trivial fact. Suppose D 6= R. Then there exists a ∈ D such that a /∈ R.

Since D is algebraic over R, a is a root of some irreducible polynomial

g(x) over R. Clearly deg(g(x)) = 1 or 2. If deg(g(x)) = 1, then g(x) =

cx + d where c, d ∈ R and c 6= 0. Now g(a) = 0 ⇒ ca + d = 0 and so

a = −d
c ∈ R, which is a contradiction to a /∈ R. Hence deg(g(x)) = 2.

Let g(x) = x2 − 2αx + β ∈ R[x] where α, β ∈ R and β 6= 0. Since

g(a) = 0⇒ a2−2aα+β = 0, a2−2aα+α2 = α2−β and so (a−α)2 = α2−β.

88



Claim: α2 − β < 0. Suppose α2 − β > 0. Then there exists δ ∈ R

such that α2 − β = δ2 = (a − α)2. This implies a − α = ±δ and so

a = ±δ + α ∈ R, which is a contradiction to a /∈ R. Hence α2 − β = 0.

Since (a − α)2 = α2 − β, (a − α)2 = α2 − β − γ2 for some γ ∈ R. From

this, (a−αγ )2 = −1. Take i = a−α
γ , i2 = −1.

Suppose D is a commutative ring. Then R ⊆ R(i) ⊆ D, λi = 0 for

some i. Since D is algebraic over F , D is algebraic over R(i) = C. By

above theorem, D = C.

Suppose D is not commutative.

Claim: Z(D) = R.

Suppose Z(D) 6= R. Since D is algebraic over R, R  Z(D) and ∃

a ∈ Z(D) such that a /∈ R. a ∈ D, by above argument, ∃ α, γ ∈ F

such that (a−αγ )2 = −1 and i = a−α
γ /∈ R and i ∈ D, i2 = −1. Clearly

R ( R(i) $ D. Since D is algebraic over R, D is algebraic over R(i) = C.

By above theorem D = C is a commutative ring which is a contradiction.

Hence Z(D) = R 6= D.

Let a ∈ D with a /∈ R. Then there exists α, γ ∈ R such that i = a−α
γ /∈

R and i2 = −1 and i /∈ R. i /∈ Z(D), then ∃ b ∈ Z(D) such that ib 6= bi.

Let c = bi − ib 6= 0 in D. Then ic + ci = i(bi − ib) + (bi − ib)i implies

ic+ci = ibi−i2b+bi2−ibi and so ic+ci = b−b = 0 implies ic = −ci. Also

ic2 = (ic)c = (−ci)c = −c(ic) = c2i implies ic2 = c2i. Since c ∈ D, c is a

root of f(x) over R. This implies c is a root of the irreducible polynomial

x2 + λx + µ ∈ R[x] and so c2 + λc + µ = 0. Hence λc = −c2 − µ. Since

λ ∈ R, iλ = λi. Also (λc)i = (−c2 − µ)i = −c2i − µi = −ic2 − iµ =

89



i(−c2 − µ) = i(λc) and so 2λci = 0.

Since c 6= 0 and i 6= 0 and D is a division ring, λ = 0 and c2 = −λ.

If µ < 0 then c2 > 0 and c2 ∈ R and c2 = (bi − ib)(bi − ib) and

c2 = i(ib2 − b2i) /∈ R, which is contradiction to c2 ∈ R. Hence µ > 0 and

c2 = −ν2 (µ = ν2) and ( cν ) = −1. Take j = c
ν and k = ij.

Let T = {α0 + α1i + α2j + α3k : αi ∈ R}. Then T ⊂ D, T is a

subdivision ring of D.

If ν ∈ D satisfies ν2 = −1, then C(ν) = {x ∈ D : xν = νx} is a

subring of D and 1, 0 ∈ C(ν) and C(ν) is a subring of D. Now Z(D) =

R ⊂ C(ν) ⇒ C(ν) is a vector space over R and dimR(C(ν)) = 2. From

this, {1, ν} is a basis for C(ν) over R and so C(ν) = {α0 + αν/αi ∈ R}.

SupposeD 6= T . Then there exists u ∈ D such that u /∈ D and so u /∈ R

and for α, γ ∈ R such that (u−αγ )2 = −1. Let w = u−α
γ and iw + wi ∈ D,

i(iw + wi) = −w + iwi = w(−1) + iwi = wi2 + iwi = (wi + iw)i and

w(iw + wi) = wiw + wwi = wiw + (−1)i = wiw + i(−1) = wiw + iw2 =

(wi+iw)w. This implies iw+wi ∈ C(i) and iw+wi = α0+α1i = α′0+α′1i.

Clearly iw + wi ∈ C(w). 2

Theorem 5.1.5. Let F be a field and F contains all nth roots of unity

and a 6= 0 ∈ F . If f(x) = xn − a ∈ F [x], then

1. the splitting field of f(x) over F is F (u) for some root u of f(x)

2. [K : F ] is normal extension

3. Gal[K : F ] is abelian.
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Proof. Let ω be the nth root of unity. Then 1, ω, ω2, . . . , ωn−1 are distinct

roots of xn − 1 over F and so νn = {1, ω, ω2, . . . , ωn−1}} =< ω >.

Let f(x) = xn − a ∈ F [x]. Then n
√
a, n
√
aω, . . . , n

√
aωn−1 are roots of

f(x) over F . If ωj n
√
a = ωj n

√
a for 1 ≤ i ≤ j ≤ n. Then by cancellation

law, ωi = ωj

ωi−j = 1. Since |w| = n and i − j < n, ωi−j = 1. This is not possible.

Hence n
√
a, n
√
aω, . . . , n

√
aωn−1 are distinct roots of f(x) over F and so

f(x) is separable over F . By hypothesis, 1, ω, ω2, . . . , ωn−1 ∈ F and so

K = F ( n
√
a) is the splitting field of f(x) over F and so [K : F ] is Galois

extension. Let σ, τ ∈ Gal[K : F ]. Then σ( n
√
a) and τ( n

√
a) are roots of

f(x) over F . Let σ( n
√
a) = ωi n

√
a and τ( n

√
a) = ωj n

√
a, i 6= j. Clearly

(σ ◦ τ)( n
√
a) = σ(τ( n

√
a)) = σ(ωj( n

√
a)) = ωiωj n

√
a and so (σ ◦ τ)( n

√
a) =

ωi+j n
√
a. Clearly (τ ◦ σ)( n

√
a) = τ(σ( n

√
a)) = τ(ωi( n

√
a)) = ωjωi n

√
a and

so ωi+j n
√
a. Therefore (τ ◦ σ)( n

√
a = (σ ◦ τ)( n

√
a) and (τ ◦ σ) = (σ ◦ τ)

and hence Gal[K : F ] is abelian. Since R is the splitting of f(x) over F ,

[K : F ] is normal extension 2

Let us sum up:

• Algebraic over a field F.

• Frobenius theorem.

Check your progress

1. If C be the field of complex numbers and suppose that the division

ring D is algebraic over C, then —
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2. IfD be a division ring over F. If a ∈ D, a /∈ F such that [(a−α)/γ]2 =

5.2 Radical Extension

Definition 5.2.1. A group G is said to be solvable(or soluble) if there

exists a chain of subgroups

{e} = H0 ⊆ · · · ⊆ Hn = G

such that each Hi is a normal subgroup of Hi+1 and the factor groups

Hi+1/Hi is abelian for every i = 0, . . . n− 1.

The above series is referred to as solvable series of G.

Example 5.2.2. Any abelian group is solvable.

Example 5.2.3. Any non-abelian simple group is not solvable.

Definition 5.2.4. Let G be a group and a, b ∈ G. Then aba−1b−1 is

called the commutator of a and b and is denoted by [a, b]. Let A =

{aba−1b−1 : a, b ∈ G} = {[a, b] : a, b ∈ G} be the set of all commutators of

elements in G.

Definition 5.2.5. Let G be a group. The subgroup of G generated by

the commutators of elements of G is called the commutator subgroup of

G. The commutator subgroup of a group G is denoted by G′ or G(1) or

[G,G]. Note that commutator subgroup is also called derived subgroup

of G.
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Theorem 5.2.6. Let G be a group. Then G′ = {e} if and only if G is

abelian.

Proof. LetG′ be the commutator subgroup ofG. Assume thatG′ = {e}.

Then by Definition 5.2.5, aba−1b−1 = e for all a, b ∈ G and hence ab = ba

for all a, b ∈ G. Hence G is abelian.

Conversely, assume that G is abelian. Then ab = ba for all a, b ∈ G

which implies ab (ba)−1 = aba−1b−1 = e for all a, b ∈ G and hence G′ =

{e}. 2

Theorem 5.2.7. Let G be a group. Then

(i) G′ is a normal subgroup of G.

(ii) G/G′ is abelian.

(iii) If H is a subgroup of G, then G/H is abelian and H is a normal

subgroup of G if and only if G′ ⊆ H.

Proof. (i) Let g ∈ G and x ∈ G′. Then x = c1 . . . cn where c′i s are

commutators of elements in G and hence ci = aibia
−1
i b−1

i for some ai, bi ∈

G for all i = 1, . . . , n. Now

gxg−1 = g (c1 . . . cn) g−1

= g
(
a1b1a

−1
1 b−1

1 · · · anbna−1
n b−1

n

)
g−1

=
(
ga1g

−1) (gb1g
−1) (ga−1

1 g−1) (gb−1
1 g−1) · · · (gang−1)

(
gbng

−1) (ga−1
n g−1) (gb−1

n g−1)

Hence gxg−1 ∈ G′ and so G′ is normal subgroup of G.
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(ii) By (i), G/G′ is a group and also aba−1b−1 ∈ G′ for all a, b ∈ G. From

this, we get abG′ = baG′ for all a, b ∈ G and so aG′bG′ = bG′aG′ for all

a, b ∈ G. Hence G/G′ is abelian.

(iii) Assume that G/H is abelian and H is a normal subgroup of G. Then

xH yH = yH xH for all x, y ∈ G and so (xy) (yx)−1 ∈ H for all x, y ∈ G.

Thus xyx−1y−1 ∈ H for all x, y ∈ G and so G′ ⊆ H.

Conversely, assume that G′ ⊆ H. For any g ∈ G and x ∈ H,

gxg−1 = gxg−1x−1x ∈ H, which shows that H is a normal subgroup of G.

Since G′ ⊆ H, aba−1b−1 ∈ H for all a, b ∈ G and so aH bH = bH aH for

all a, b ∈ G. Hence G/H is abelian. 2

Definition 5.2.8. Let [K : F ] be a field extension. [K : F ] is simple

radical extension if K = F (α) such that αn ∈ F for some n ∈ Z+.

Example 5.2.9. Q(
√

2)|Q, Q( 3
√

2)|Q and Q(ω)|Q are all simple radical

extensions.

Example 5.2.10. Is Q(
√

2,
√

3)|Q a simple radical extension?

Solution:

Q(
√

2 +
√

3) = Q(
√

2,
√

3)

(
√

2 +
√

3)2 = 5 + 2
√

6

(
√

2+
√

3)3 = (
√

2+
√

3)(5+2
√

6) and so (
√

2+
√

3)n /∈ Q for any n ∈ Z+.

Clearly Q(
√

2,
√

3)|Q is not a simple radical extension

94



Definition 5.2.11. [K : F ] is radical extension if there is a tower of fields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fi ⊂ Fi+1 ⊂ · · · ⊂ Fk = K such that each

Fi+1|Fi is simple radical.

Example 5.2.12. Is Q(
√

2,
√

3) a radical extension?

Clearly K = Q(
√

2,
√

3)|Q is radical extension, since Q ⊂ Q(
√

2) ⊂

Q(
√

2,
√

3), Q ⊂ Q(
√

3) ⊂ Q(
√

2,
√

3) and Q ⊂ Q(
√

6) ⊂ Q(
√

2,
√

3).

Example 5.2.13. Clearly Q( 4
√

5, i)|Q is radical extension, since Q ⊂

Q(i) ⊂ Q( 4
√

5, i) ⊂ Q( 4
√

5, i).

Definition 5.2.14. 1. Let [K : F ] be algebraic extension and α ∈ K.

Then α is solvable by radical or α is solvable over F if there exists a

radical extension [L : F ] such that α ∈ L.

2. [K : F ] is solvable if α is solvable over F for all α ∈ K.

3. Let f(x) ∈ F [x] be solvable. Then all of roots the splitting field are

solvable over F .

Example 5.2.15. Let f(x) = x3 − 2 ∈ Q[x]. Then 3
√

2, ω 3
√

2, ω2 3
√

2 are

the roots of f(x) overQ and so K = Q( 3
√

2, ω)|Q is radical extension, since

Q ⊂ Q(ω) ⊂ Q( 3
√

2, ω), Q ⊂ Q( 3
√

2) ⊂ Q( 3
√

2, ω), and Q ⊂ Q(ω 3
√

2) ⊂

Q( 3
√

2, ω), and Q ⊂ Q(ω2) ⊂ Q( 3
√

2, ω). Therefore f(x) is solvable over

Q.
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Theorem 5.2.16. If p(x) ∈ F [x] is solvable by radicals over F , then the

Galois group over F of p(x) is a solvable group.

Proof. Let K be the splitting field of p(x) over F .

Then the galois group of p(x) over F is G(K, f).

Since p(x) is solvable by radicals over F , then there exists a sequence of

fields.

F ⊂ F1 = F (ω1) ⊂ F2 = F1 (ω2) ⊂ . . . ⊂ FK = FK−1 (ωK)

, where ωr1
1 ∈ F, ωr2

2 ∈ F1, . . . , ω
rk
k ∈ FK−1 and KCFk. W.L.O.G, assume

that FK is a normal extension of F .

Since FK is a normal extension of F , then FK is also a normal extension

of any intermediate field.

Hence Fk is a normal extension of each Fi. By lemma, each Fi is a

normal extension of Fi−1 and since FK is a normal over Fi−1, by theorem,

G (FK , Fi−1) is a normal subgroup in G (FK , Fi−1).

consider the chain,

G (Fk, F ) ⊃ G (Fk, F1) ⊃ . . . ⊃ G (Fk, Fk−1) ⊃ {e} (1)

Each subgroup in this chain is a normal subgroup.

Since Fi is a normal extension of Fi−1, by the fundamental theorem of
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Galois theory, the group of Fi over Fi−1,

G (Fi, Fi−1) is isomorphic to G (Fk, Fi−1)
G (Fk, Fi)

By lemma, G (Fi, Fi−1) is an abelian group.

Thus, each quotient group G(Fh,Fi−1)
G(FF ,Fi) of the chain (1) is abelian.

Thus the group G (FK , F ) is solvable.

Since K ⊂ FK and K is a normal extension of F by Theorem ,

G (FK , F ) is a normal subgroup of G (FK , F ) and G(K,F ) is isomorphic

to G(FK ,F )
G(FK ,K) .

Thus, G(K,F ) is a homomorphic image of G (FK , F ).

Since G (FK , F ) is a solvable group, by the corollary to lemma-5.7.1,

G(K,F ) must be a solvable group.

Since G(K,F ) is a galois group of p(x) over F , and G(K,F ) is solvable,

then the galois group of p(x) over F is solvable group. 2

Remark 5.2.17. The converse of this theorem is also true. i.e. If the

Galois group of P (x) over F is solvable, then p(x) is solvable by radicals

over F .

Theorem -5.7.2 and its converse part are true even if F does not contain

roots of unity.

Theorem 5.2.18. (Classic Theorem of Abel): The general polynomial of

degree n ≥ 5 is not solvable by radicals.
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Proof. If F (a1, a2, . . . , an) is the field of rational functions in the n vari-

ables a1, a2, . . . , an.

Then the Galois group of the polynomial

p(t) = tn + a1t
n−1 + · · ·+ an

over F (a1, a2, . . . , an) was sn the symmetric group of degree n. Then, Sn

is not a solvable group when n ≥ 5.

Thus, p(t) is not solvable by radicals over F (a1, a2, . . . , an) when n ≥ 5.

2

Let us sum up:

• Solvable by radicals.

• Solvable.

• Homomorphic image.

• Galois group is solvable group.

Check your progress

1. Sn is not solvable for —

2. If α, β, γ are the roots of the equation x3 + 3x2 + 2x + 1 = 0, then

the value of ∑αβ =
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5.3 Integral Quaternions

Let Q be the division ring of real quaternions.

Definition 5.3.1. For x = a0 + a1i + aj + a3k ∈ Q, the adjoint of x,

denoted by x∗, is defined by x∗ = a0 − a1i− a2j − a3k.

Lemma 5.3.2. The adjoint in Q satisfies

(i) x∗∗ = x

(ii) (αx+ βy)∗ = αx∗ + βy∗, where α, β ∈ R

(iii) (xy)∗ = y∗x∗.

Proof. (i) Let x = a0 +a1i+aj+a3k ∈ Q. Then x∗ = a0−a1i−a2j−a3k

and (x∗)∗ = a0 + a1i+ a2j + a3k = x.

(ii) Let x = a0 + a1i+ aj + a3k and y = b0 + b1i+ bj + b3k ∈ Q. Then

αx + βy = (αa0 + βb0) + (αa1 + βb1)i + (αa2 + βb2)j + (αa3 + βb3)k.

Therefore by the definition of ∗, (αx+βy)∗ = (αa0 +βb0)− (αa1 +βb1)i−

(αa2 + βb2)j − (αa3 + βb3)k = αx∗ + βy∗.

(iii) It is enough to do so for a basis of Q over the reals. We prove it for

the particular basis 1, i, j, k. Now ij = k and (ij)∗ = k and (ij)∗ = −k.

Similarly (ik)∗ = k∗i∗, (jk)∗ = k∗j∗. Also (i2)∗ = −1 = (i∗)2, and

similarly for j and k. Since part (iii) is true for the basis elements and

part (ii) holds, (iii) is true for all linear combinations of the basis elements

with real coefficients, hence (ii) holds for all arbitrary x, y ∈ Q 2
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Definition 5.3.3. If x ∈ Q, then the norm of x, denoted by N(x), is

defined by N(x) = xx∗.

Note that if x = a0 +a1i+a2j+a3k ∈ Q, then x∗ = a0−a1i−a2j−a3k

and N(x) = a2
0 + a2

1 + a2
2 + a2

3. Also N(0) = 1 and N(x) is a positive real

number for x 6= 0 in Q. In particular, for any real number a, N(a) = a2.

If x 6= 0, then x−1 = 1
N(x)x

∗.

Lemma 5.3.4. For all x, y ∈ Q, N(xy) = N(x)N(y).

Proof. By the very definition of norm, N(xy) = (xy)(xy)∗. By Lemma

5.3.2, (xy)∗ = y∗x∗ and so N(xy) = xyy∗x∗ = xN(y)x∗. Since N(y) is

real and N(y) is in center of Q, N(xy) = xx∗N(y) = N(x)N(y). 2

Theorem 5.3.5. Every positive integer can be expressed as the sum of

squares of four integers.

Proof. Given a positive integer n.

To claim: n = x2
0 + x2

1 + x2
2 + x2

3 for four integers x0, x1, x2, x3.

Since every integer factors into a product of prime numbers, if every prime

number were written as a sum of four squares. By Lagrange identity, every

integer can be expressed as a sum of four squares.

Thus, we have to prove this theorem for prime numbers n.

For n = 2, the prime number 2 can be written as 12 + 12 + 02 + 02 as

a sum of four squares.
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Thus, WLOG , assume that n is an odd Prime number p. consider the

quaternions Wp over Jp, the integer mod p.

Wp = {α0 + α1i+ α2j + α3k | α0, α1, α2, α3 ∈ Jp}

⇒ Wp is a finite ring. since p 6= 2, it is not commutative for ij = −ji 6= ji.

Thus, by Wedderburn’s theorem, Wp cannot be a division ring. (By

problem 1 of sec.3.5) It must have a left-ideal, which is neither (0) nor

Wp.

But then the two-sided ideal V in H, defined by

V = {x0ξ + x1i+ x2j + x3k | P divides all of x0, x1, x2, x3} .

It cannot be a maximal left -ideal of H, since H/V is isomorphic to Wp.

(If V were a maximal left-ideal in H,H/V and so Wp, would have no left

-ideals other than (0) and H/V ).

Thus, there is a left-ideal L of H satisfying L 6= H,L 6= V and L ⊃ V .

By lemma, there exists u ∈ L such that every element in L is a left

-multiple of u.

since p ∈ V and p ∈ L, then p = cu for some c ∈ H.

Since u /∈ V, c cannot have an inverse in H, otherwise u = c−1p would

be in V .

Thus, N(C) > 1 by lemma.

since L 6= H,U cannot have an inverse in H, hence, N(u) > 1. Since
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p = cu & p2 = N(p) gives

p2 = N(p)

= N(cu)

= N(c)N(u)

But N(c) & N(u) are integers, since both c and U are in H, both are

larger than 1& both divide p2.

The only way this is possible is that N(C) = N(U) = P .

since u ∈ H, u = m0ξ +m1i+m2j +m3k

where mo,m1,m2,m3 are integers.

Thus, 2u = 2m0b+ 2m1i+ 2m2j + 2m3k

= (m0 +m0i+m0j +m0k) + 2m1i+ 2m2j + 2m3k

= m0 + (2m1 +m0) i+ (2m2 +m0) j + (2m3 +m0) k.

Therefore, N(2u) = m2
0 + (2m1 +m0)2 + (2m2 +m0)2 + (2m3 +m0)2.

But N(2u) = N(2)N(u) = 4P .

since N(8) = 4 and N(4) = P . we have shown that

4p = m2
0 + (2m1 +m0)2 + (2m2 +m0)2 + (2m3 +m0)2

We are almost done. To finish the proof we introduce an old trick of

Euler’s:

If 2a = x2
0 + x2

1 + x2
2 + x2

3 where a, x0, x1, x2 and x3 are integers.

Then a = y2
0 + y2

1 + y2
2 + y2

3 for some integers y0, y1, y2, y3
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Since 2a is even, the x ’s are all even, all odd or two are even and two

are odd.

At any rate in all three cases we can renumber the x′s and pair them in

such a way that

y0 = x0 + x1

2 , y1 = x0 − x1

2 , y2 = x2 + x3

2

and y3 = x2−x3
2 are all integers.

But, y2
0 + y2

1 + y2
2 + y2

3 =
(
x0+x1

2
)2 +

(
x0−x1

2
)2 +

(
x2+x3

2
)2

= 1
2
(
x2

0 + x2
1 + x2

2 + x2
3
)

= 1
2(2a)

= a

since 4p is a sum of four squares, by the remark just made 2p also is:

Since 2p is a sum of four squares, p also must be such a sum.

Thus p = a2
0 +a2

1 +a2
2 +a2

3 for some integers a0, a1, a2, a3 and Lagrange’s

theorem is established. 2

Let us sum up:

• Adjoint.and Norm.

• Lagrange Identity.

• Left Division Algorithm.

• Left and right Ideal.
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Check your progress

1. If a ∈ H the a−1 ∈ H if and only if —

2. Which form of the primes numbers can be expressed the sum of two

squares ?

Unit Summary:

In this unit, we discussed the splitting field of polynomial over F and the

solvable by radicals over F . Further, we proved the Frobenius theorem

and Four-square theorem.

Glossary:

• Solvable and commutator

• Sn is not solvable for n ≥ 5.

• Only irreducible polynomials over the field of real numbers are of

degree 1 or 2.

• The Frobenius theorem.

• N(x) = xx∗

• Q = {x ∈ Q/x = α0+α1i+α2j+α3k, and x
∗ = α0−α1i−α2j−α3k.}

• Four square theorem.
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Self Assessment questions

1. Let D be a division ring algebraic over F , the field of real numbers.

Then prove D is isomorphic to one of: the field of real numbers, the

field of complex numbers, or the division ring of real quaternions.

2. Prove that if a ∈ H then a−1 ∈ H if and only if N((a) = 1.

3. Let G = Sn, where n ≥ 5; then G(k) for k = 1, 2, 3, ... contains every

3-cycle of Sn.

4. The general polynomial of degree n ≥ 5 is not solvable by radicals.

Exercises

1. Every positive integer can be expressed as the sum of squares of four

integers.

2. Prove that subgroup of a solvable group is solvable.

3. If A is a ring algebraic over a field F and A has no zero divisors prove

that A is a division ring.

4. Exhibit an infinite number f positive integers which cannot be written

as the sum of three squares.

Answers for check your progress

Section 5.1

1. D = C

2. −1
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Section 5.2

1. n ≥ 5

2. 2
Section 5.3

1. N(a) = 1

2. 4n+ 1
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